Skip to main content
Log in

Adsorption of fluoranthene in surfactant solution on activated carbon: equilibrium, thermodynamic, kinetic studies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Adsorption of fluoranthene (FLA) in surfactant solution on activated carbon (AC) was investigated. Isotherm, thermodynamic, and kinetic attributes of FLA adsorption in the presence of the surfactant on AC were studied. Effects of AC dosage, initial concentration of TX100, initial concentration of FLA, and addition of fulvic acid on adsorption were studied. The experimental data of both TX100 and FLA fitted the Langmuir isotherm model and the pseudo-second-order kinetic model well. Positive enthalpy showed that adsorption of FLA on AC was endothermic. The efficiency of selective FLA removal generally increased with increasing initial surfactant concentration and decreasing fulvic acid concentration. The surface chemistry of AC may determine the removal of polycyclic aromatic hydrocarbons. The adsorption process may be controlled by the hydrophobic interaction between AC and the adsorbate. The microwave irradiation of AC may be a feasible method to reduce the cost of AC through its regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn CK, Kim YM, Woo SH, Park JM (2007) Selective adsorption of phenanthrene dissolved in surfactant solution using activated carbon. Chemosphere 69:1681–1688

    Article  CAS  Google Scholar 

  • Ahn CK, Kim YM, Woo SH, Park JM (2008a) Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon. J Hazard Mater 154:153–160

    Article  CAS  Google Scholar 

  • Ahn CK, Lee MW, Lee DS, Woo SH, Park JM (2008b) Mathematical evaluation of activated carbon adsorption for surfactant recovery in a soil washing process. J Hazard Mater 160:13–19

    Article  CAS  Google Scholar 

  • Ahn CK, Woo SH, Park JM (2008c) Enhanced sorption of phenanthrene on activated carbon in surfactant solution. Carbon 46:1401–1410

    Article  CAS  Google Scholar 

  • Ahn CK, Woo SH, Park JM (2010a) Selective adsorption of phenanthrene in nonionic-anionic surfactant mixtures using activated carbon. Chem Eng J 158:115–119

    Article  CAS  Google Scholar 

  • Ahn CK, Woo SH, Park JM (2010b) Surface solubilization of phenanthrene by surfactant sorbed on soils with different organic matter contents. J Hazard Mater 177:799–806

    Article  CAS  Google Scholar 

  • Arnold C, Ulrich S, Stoll S, Marie P, Holl Y (2011) Monte Carlo simulations of surfactant aggregation and adsorption on soft hydrophobic particles. J Colloid Interf Sci 353:188–195

    Article  CAS  Google Scholar 

  • Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R (1991) A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water, Air, Soil Pollut 60:279–300

    Article  CAS  Google Scholar 

  • Cabal B, Ania CO, Parra JB, Pis JJ (2009) Kinetics of naphthalene adsorption on an activated carbon: comparison between aqueous and organic media. Chemosphere 76:433–438

    Article  CAS  Google Scholar 

  • Chen H, Zhao J, Wu JY, Dai GL (2011) Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. J Hazard Mater 192:246–254

    CAS  Google Scholar 

  • Chen W, Zhang Z, Li Q, Wang H (2012) Adsorption of bromate and competition from oxyanions on cationic surfactant-modified granular activated carbon (GAC). Chem Eng J 203:319–325

    Article  CAS  Google Scholar 

  • Cheng HF, Sabatini DA (2007) Separation of organic compounds from surfactant solutions: a review. Sep Sci Technol 42:453–475

    Article  CAS  Google Scholar 

  • Choi H, Shin M, Kim D, Jeon C, Baek K (2008) Removal characteristics of reactive black 5 using surfactant-modified activated carbon. Desalination 223:290–298

    Article  CAS  Google Scholar 

  • Da E, Adeel Z, Rg L (1994) Distribution of nonionic surfactant and phenanthrene in a sediment aqueous system C-8748-2009. Environ Sci Technol 28:1550–1560

    Article  Google Scholar 

  • Dai JY, Ran W, Xing BS, Gu M, Wang LS (2006) Characterization of fulvic acid fractions obtained by sequential extractions with pH buffers, water, and ethanol from paddy soils. Geoderma 135:284–295

    Article  CAS  Google Scholar 

  • Delgado-Saborit JM, Stark C, Harrison RM (2011) Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ Int 37:383–392

    Article  CAS  Google Scholar 

  • Denoyel R, Rouquerol J (1991) Thermodynamic (including microcalorimetry) study of the adsorption of nonionic and anionic surfactants onto silica, kaolin, and alumina. J Colloid Interf Sci 143:555–572

    Article  CAS  Google Scholar 

  • Erdinc N, Gokturk S, Tuncay M (2010) A study on the adsorption characteristics of an amphiphilic phenothiazine drug on activated charcoal in the presence of surfactants. Colloid Surface B 75:194–203

    Article  CAS  Google Scholar 

  • Ferrari M, Ravera F, Viviani M, Liggieri L (2004) Characterization of surfactant aggregates at solid–liquid surfaces by atomic force microscopy. Colloids Surf, A 249:63–67

    Article  CAS  Google Scholar 

  • Freundlich H (1906) Ueber die Adsorption in Loesungen. Phys.chem: 385–470

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    Article  CAS  Google Scholar 

  • García-Gil JC, Plaza C, Fernández JM, Senesi N, Polo A (2008) Soil fulvic acid characteristics and proton binding behavior as affected by long-term municipal waste compost amendment under semi-arid environment. Geoderma 146:363–369

    Article  Google Scholar 

  • Ghaedi M, Sadeghian B, Pebdani AA, Sahraei R, Daneshfar A, Duran C (2012) Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chem Eng J 187:133–141

    Article  CAS  Google Scholar 

  • Gonzalez-Garcia C, Gonzalez-Martin ML, Gomez-Serrano V, Bruque JM, Labajos-Broncano L (2001) Analysis of the adsorption isotherms of a non-ionic surfactant from aqueous solution onto activated carbons. Carbon 39:849–855

    Article  CAS  Google Scholar 

  • Guha S, Jaffé PR, Peters CA (1998) Solubilization of PAH mixtures by a nonionic surfactant. Environ Sci Technol 32:930–935

    Article  CAS  Google Scholar 

  • Harwell JH, Sabatini DA, Knox RC (1999) Surfactants for ground water remediation. Colloids Surf, A 151:255–268

    Article  CAS  Google Scholar 

  • Hong H, Kim H, Lee Y, Yang J (2009) Removal of anionic contaminants by surfactant modified powdered activated carbon (SM-PAC) combined with ultrafiltration. J Hazard Mater 170:1242–1246

    Article  CAS  Google Scholar 

  • Kilduff JE, Wigton A (1998) Sorption of TCE by humic-preloaded activated carbon: incorporating size-exclusion and pore blockage phenomena in a competitive adsorption model. Environ Sci Technol 33:250–256

    Article  Google Scholar 

  • L. C. Sander (1997) SAW polycyclic aromatic hydrocarbon structure index. NIST Special Publication 922

  • Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids Part I Solids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  • Levitz P, Van Damme H, Keravis D (1984) Fluorescence decay study of the adsorption of nonionic surfactants at the solid–liquid interface. 1. Structure of the adsorption layer on a hydrophilic solid. J Phys Chem 88:2228–2235

    Article  CAS  Google Scholar 

  • Liu X, Quan X, Bo L, Chen S, Zhao Y (2004) Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon 42:415–422

    Article  CAS  Google Scholar 

  • Mohamed MM (2004) Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk. J Colloid Interf Sci 272:28–34

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Narkis N, Ben-David B (1985) Adsorption of non-ionic surfactants on activated carbon and mineral clay. Water Res 19:815–824

    Article  CAS  Google Scholar 

  • Newcombe G, Drikas M, Hayes R (1997) Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol. Water Res 31:1065–1073

    Article  CAS  Google Scholar 

  • Nourmoradi H, Nikaeen M, Khiadani Hajian M (2012) Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chem Eng J 191:341–348

    Article  CAS  Google Scholar 

  • Okona-Mensah KB, Battershill J, Boobis A, Fielder R (2005) An approach to investigating the importance of high potency polycyclic aromatic hydrocarbons (PAHs) in the induction of lung cancer by air pollution. Food Chem Toxicol 43:1103–1116

    Article  CAS  Google Scholar 

  • Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interface 138:24–58

    Article  CAS  Google Scholar 

  • Punyapalakul P, Takizawa S (2006) Selective adsorption of nonionic surfactant on hexagonal mesoporous silicates (HMSs) in the presence of ionic dyes. Water Res 40:3177–3184

    Article  CAS  Google Scholar 

  • Rivas FJ (2006) Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation based treatments. J Hazard Mater 138:234–251

    Article  CAS  Google Scholar 

  • Rodriguez A, Garcia J, Ovejero G, Mestanza M (2009) Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics. J Hazard Mater 172:1311–1320

    Article  CAS  Google Scholar 

  • Sehili AM, Lammel G (2007) Global fate and distribution of polycyclic aromatic hydrocarbons emitted from Europe and Russia. Atmos Environ 41:8301–8315

    Article  CAS  Google Scholar 

  • Sheng Peng WWJC (2011) Removal of PAHs with surfactant-enhanced soil washing Influencing factors and removal effectiveness. Chemosphere 82:1173–1177

    Article  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Tiberg F, Brinck J, Grant L (1999) Adsorption and surface-induced self-assembly of surfactants at the solid–aqueous interface. Curr Opin Colloid Interface 4:411–419

    Article  CAS  Google Scholar 

  • Valderrama C, Gamisans X, de Las HX, Farran A, Cortina JL (2008) Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: intraparticle diffusion coefficients. J Hazard Mater 157:386–396

    Article  CAS  Google Scholar 

  • Vinod VP, Anirudhan TS (2003) Adsorption behaviour of basic dyes on the humic acid immobilized pillared clay. Water, Air, Soil Pollut 150:193–217

    Article  CAS  Google Scholar 

  • Wan JZ, Chai LN, Lu XH, Lin YS, Zhang ST (2011) Remediation of hexachlorobenzene contaminated soils by rhamnolipid enhanced soil washing coupled with activated carbon selective adsorption. J Hazard Mater 189:458–464

    Article  CAS  Google Scholar 

  • Wang W, Massey Simonich SL, Xue M, Zhao J, Zhang N, Wang R, Cao J, Tao S (2010) Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China. Environ Pollut 158:1245–1251

    Article  CAS  Google Scholar 

  • Wang Y, Mao R, Wang Q, Yang Z, Gao B, Zhao Y (2012) Fulvic acid removal performance and control of disinfection by-product formation potential in coagulation–ultrafiltration process. Desalination 302:55–64

    Article  CAS  Google Scholar 

  • Xia Z, Duan X, Qiu W, Liu D, Wang B, Tao S, Jiang Q, Lu B, Song Y, Hu X (2010) Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Sci Total Environ 408:5331–5337

    Article  CAS  Google Scholar 

  • Xie J, Meng W, Wu D, Zhang Z, Kong H (2012) Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds. J Hazard Mater 231–232:57–63

    Article  Google Scholar 

  • Xu F, Wu W, Wang J, Qin N, Wang Y, He Q, He W, Tao S (2011) Residual levels and health risk of polycyclic aromatic hydrocarbons in freshwater fishes from Lake Small Bai-Yang-Dian, Northern China. Ecol Model 222:275–286

    Article  CAS  Google Scholar 

  • Zhou W, Zhu L (2008) Influence of surfactant sorption on the removal of phenanthrene from contaminated soils. Environ Pollut 152:99–105

    Article  CAS  Google Scholar 

  • Zhu B, Gu T (1991) Surfactant adsorption at solid–liquid interfaces. Adv Colloid Interface 37:1–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Beijing Natural Science Foundation: Mechanisms of selective recovery of surfactant in soil washing solutions with activated carbon (8122027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Chen.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Chen, J., Jiang, L. et al. Adsorption of fluoranthene in surfactant solution on activated carbon: equilibrium, thermodynamic, kinetic studies. Environ Sci Pollut Res 21, 1809–1818 (2014). https://doi.org/10.1007/s11356-013-2075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2075-1

Keywords

Navigation