Skip to main content
Log in

The role of Mn oxide doping in phosphate removal by Al-based bimetal oxides: adsorption behaviors and mechanisms

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study investigated the behaviors and mechanisms of phosphate adsorbed onto manganese (Mn) oxide-doped aluminum (Al) oxide (MODAO). The isotherm results demonstrated that the maximum amount of phosphorus (P) adsorbed onto MODAO was 59.8 mg/g at T = 298 K (pH 6.0). This value was nearly twice the amount of singular AlOOH and could increase with rising temperatures. The kinetic results illustrated that most of the P was adsorbed onto MODAO within 5 h, which was shorter than the equilibrium time of phosphate adsorption onto AlOOH. The Elovich model effectively described the adsorption kinetic data of MODAO because of its heterogeneous surface. The optimal solution pH for phosphate removal was approximately 5.0 because of electrostatic interaction effects. Meanwhile, the decrease in P uptake with increasing ion strength suggested that phosphate adsorption occurred through an outer-sphere complex. Phosphates would compete for adsorption sites on the surface of MODAO in the presence of fluoride ion or sulfate. In addition, the spectroscopic analysis results of Fourier transform infrared spectroscopy and X-ray photoemission spectroscopy indicated that removal mechanisms of phosphate primarily include adhesion to surface hydroxyl groups and ligand exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anto PL, Anto RJ, Varghese HT, Panicker CY, Philipe D, Brolof AG (2009) FT-IR, FT-Raman and SERS spectra of anilinium sulfate. J Raman Spectrosc 40:1810–1815

    Article  CAS  Google Scholar 

  • Awual MR, Jyo A (2011) Assessing of phosphorus removal by polymeric anion exchangers. Desalination 281:111–117

    Article  CAS  Google Scholar 

  • Bhatnagar A, Kumar E, Sillanpää M (2011) Fluoride removal from water by adsorption—a review. Chem Eng J 171(3):811–840

    Article  CAS  Google Scholar 

  • Bia G, de Pauli CP, Borgnino L (2012) The role of Fe(III) modified montmorillonite on fluoride mobility: adsorption experiments and competition with phosphate. J Environ Manage 100:1–9

    Article  CAS  Google Scholar 

  • Cai P, Zheng H, Wang C, Ma HW, Hu JC, Pu YB, Liang P (2012) Competitive adsorption characteristics of fluoride and phosphate on calcined Mg–Al–CO3 layered double hydroxides. J Hazard Mater 213–214:100–108

    Article  Google Scholar 

  • Chan YT, Kuan WH, Chen TY, Wang MK (2009) Adsorption mechanism of selenate and selenite on the binary oxide systems. Water Res 43:4412–4420

    Article  CAS  Google Scholar 

  • Chen B, Zhu Z, Guo Y, Qiu Y, Zhao J (2013) Facile synthesis of mesoporous Ce–Fe bimetal oxide and its enhanced adsorption of arsenate from aqueous solutions. J Colloid Interface Sci 398:142–151

    Article  CAS  Google Scholar 

  • Chiem LT, Huynh L, Ralston J, Beattie DA (2006) An in situ ATR-FTIR study of polyacrylamide adsorption at the talc surface. J Colloid Interface Sci 297(1):54–61

    Article  CAS  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323(20):1014–1015

    Article  CAS  Google Scholar 

  • D’Arcy M, Weiss D, Bluck M, Vilar R (2011) Adsorption kinetics, capacity and mechanism of arsenate and phosphate on a bifunctional TiO2–Fe2O3 bi-composite. J Colloid Interface Sci 364(1):205–212

    Article  Google Scholar 

  • Daou TJ, Begin-Colin S, Grenèche JM, Thomas F, Derory A, Bernhardt P, Legaré P, Pourroy G (2007) Phosphate adsorption properties of magnetite-based nanoparticles. Chem Mater 19:4494–4505

    Article  CAS  Google Scholar 

  • de Sousa AF, Braga TP, Gomes ECC, Valentini A, Longhinotti E (2012) Adsorption of phosphate using mesoporous spheres containing iron and aluminum oxide. Chem Eng J 210:143–149

    Article  Google Scholar 

  • Deng SB, Liu H, Zhou W, Huang J, Yu G (2011) Mn–Ce oxide as a high-capacity adsorbent for fluoride removal from water. J Hazard Mater 186:1360–1366

    Article  CAS  Google Scholar 

  • Dhoble RM, Lunge S, Bhole AG, Rayalu S (2011) Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As(III) in water. Water Res 45:4769–4781

    Article  CAS  Google Scholar 

  • Doula M, Ioannou A, Dimirkou A (2000) Thermodynamics of copper adsorption–desorption by Ca-kaolinite. Adsorption 6(4):325–335

    Article  CAS  Google Scholar 

  • Freudlich HMF (1906) Ünber die adsorption in lösungen. Z Phys Chem 57(A):385–470, Leipzig

    Google Scholar 

  • Gao SJ, Wang CH, Pei YS (2013) Comparison of different phosphate species adsorption by ferric and alum water treatment residuals. J Environ Sci 25(5):986–992

    Article  CAS  Google Scholar 

  • Gong WX, Qu JH, Liu RP, Lan HC (2012) Adsorption of fluoride onto different types of aluminas. Chem Eng J 189–190:126–133

    Google Scholar 

  • Hall ER, Monti A, Mohn WW (2010) A comparison of bacterial populations in enhanced biological phosphorus removal processes using membrane filtration or gravity sedimentation for solids–liquid separation. Water Res 44:2703–2714

    Article  CAS  Google Scholar 

  • Helmy AK, Ferreiro EA, de Bussetti SG (1996) Energy, enthalpy, and isosteric heat of adsorption of phosphate on hydrous Al oxide. J Colloid Interface Sci 183:131–134

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G (1998a) Kinetic models for the sorption of dye from aqueous solution by wood. J Environ Sci Health Part B: Proc Saf Environ Prot 76(B):184–185

    Google Scholar 

  • Ho YS, Mckay G (1998b) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  • Hua M, Zhang SJ, Pan BC, Zhang WM, Lv L, Zhang QX (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  • Kawasaki N, Ogata F, Tominaga H (2010) Selective adsorption behavior of phosphate onto aluminum hydroxide gel. J Hazard Mater 181(1–3):574–579

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Li DD, Min HY, Jiang X, Ran XQ, Zou LY, Fan JW (2013) One-pot synthesis of aluminum-containing ordered mesoporous silica MCM-41 using coal fly ash for phosphate adsorption. J Colloid Interf Sci. doi:10.1016/j.jcis.2013.04.018

    Google Scholar 

  • Liu RP, Gong WX, Lan HC, Gao YP, Liu HJ, Qu JH (2011) Defluoridation by freshly prepared aluminum hydroxides. Chem Eng J 175:144–149

    Article  CAS  Google Scholar 

  • Liu T, Wu K, Zeng LH (2012) Removal of phosphorus by a composite metal oxide adsorbent derived from manganese ore tailings. J Hazard Mater 217–218:29–35

    Article  Google Scholar 

  • Liu JY, Zhou Q, Chen JH, Zhang L, Chang N (2013) Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber. Chem Eng J 215–216:859–867

    Article  Google Scholar 

  • Long F, Gong JL, Zeng GM, Chen L, Wang XY, Deng JH, Niu QY, Zhang HY, Zhang XR (2011) Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide. Chem Eng J 171(2):448–455

    Article  CAS  Google Scholar 

  • Low MJD (1960) Kinetics of chemisorption of gases on solids. Chem Rev 60:267–312

    Article  CAS  Google Scholar 

  • Lv JB, Liu HJ, Liu RP, Zhao X, Sun LP, Qu JH (2013) Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent. Powder Technol 233:146–154

    Article  Google Scholar 

  • Mäkiea P, Persson P, Österlunda L (2013) Adsorption of trimethyl phosphate and triethyl phosphate on dry and water pre-covered hematite, maghemite, and goethite nanoparticles. Colloid Interface Sci 392:349–358

    Article  Google Scholar 

  • Maliyekkal SM, Sharma AK, Philip L (2006) Manganese-oxide-coated alumina: a promising sorbent for defluoridation of water. Water Res 40(19):3497–3506

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142(1–2):1–53

    Article  CAS  Google Scholar 

  • Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Norwalk

    Google Scholar 

  • Mustafa S, Zaman MI, Khan S (2008) Temperature effect on the mechanism of phosphate anions sorption by β-MnO2. Chem Eng J 141:51–57

    Article  CAS  Google Scholar 

  • Nakamoto N (1986) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  • Nero MD, Galindo C, Barillon R, Halter E, Madé B (2010) Surface reactivity of α-Al2O3 and mechanisms of phosphate sorption: in situ ATR-FTIR spectroscopy and f potential studies. J Colloid Interface Sci 342:437–444

    Article  Google Scholar 

  • Ozcan AS, Erdem B, Ozcan A (2005) Adsorption of acid blue 193 from aqueous solutions onto BTMA-bentonite. Colloids Surf A 266:73–81

    Google Scholar 

  • Ren ZM, Zhang GS, Chen JP (2011) Adsorptive removal of arsenic from water by an iron–zirconium binary oxide adsorbent. J Colloid Interface Sci 358:230–237

    Article  CAS  Google Scholar 

  • Rudzinski W, Steele WA, Zgrablich G (1996) Equilibria and dynamics of gas adsorption on heterogeneous solid surfaces. Elsevier, Amsterdam

    Google Scholar 

  • Sarma J, Sarma A, Bhattacharya KG (2008) Biosorption of commercial dyes on Azadirachta indica leaf powder: a case study with a basic dye rhodamine B. Ind Eng Chem Res 47(15):5433–5440

    Article  CAS  Google Scholar 

  • Somusundurun P, Shrolri S, Huung L (1998) Thermodynamics of adsorption of surfactants at solid–liquid interface. Pure Appl Chem 70(3):621–626

    Google Scholar 

  • Sparks DL (1989) Kinetics of soil chemical processes. Academic, New York

    Google Scholar 

  • Tanada S, Kabayama M, Kawasaki N, Sakiyama T, Nakamura T, Araki M, Tamura T (2003) Removal of phosphate by aluminum oxide hydroxide. J Colloid Interface Sci 257:135–140

    Article  CAS  Google Scholar 

  • Taujale S, Zhang H (2012) Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide. Environ Sci Technol 46(5):2764–2771

    Article  CAS  Google Scholar 

  • Teng SX, Wang SG, Gong WX, Liu XW, Gao BY (2009) Removal of fluoride by hydrous manganese oxide-coated alumina: performance and mechanism. J Hazard Mater 168(2–3):1004–1011

    Article  CAS  Google Scholar 

  • Tran N, Drogui P, Blais J-F, Mercier G (2012) Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment. Sep Purif Technol 95:16–25

    Article  CAS  Google Scholar 

  • Violante A, Pigna M, Gaudio SD, Cozzolino V, Banerjee D (2009) Coprecipitation of arsenate with metal oxides. 3. Nature, mineralogy, and reactivity of iron(III)–aluminum precipitates. Environ Sci Technol 43(5):1515–1521

    Article  CAS  Google Scholar 

  • Weber WJ Jr, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanitary Eng Div Proc Am Soc Civil Eng 89:31–59

    Google Scholar 

  • Wu K, Liu T, Xue W, Wang XC (2012) Arsenic(III) oxidation/adsorption behaviors on a new bi-metal adsorbent of Mn-oxide-doped Al oxide. Chem Eng J 192:343–349

    Article  CAS  Google Scholar 

  • Xiong JB, Qin Y, Islam E, Yue M, Wang WF (2011) Phosphate removal from solution using powdered freshwater mussel shells. Desalination 276:317–321

    Article  CAS  Google Scholar 

  • Xu W, Wang HJ, Liu RP, Zhao X, Qu JH (2011) The mechanism of antimony(III) removal and its reactions on the surfaces of Fe–Mn binary oxide. J Colloid Interface Sci 363(1):320–326

    Article  CAS  Google Scholar 

  • Yin HB, Yun Y, Zhang YL, Fan CX (2011) Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite. J Hazard Mater 198:362–369

    Article  CAS  Google Scholar 

  • Yin HB, Kong M, Fan CX (2013) Batch investigations on P immobilization from wastewaters and sediment using natural calcium rich sepiolite as a reactive material. Water Res. doi:10.1016/j.watres.2013.04.044

    Google Scholar 

  • Zengin GE, Artan N, Orhon D, Satoh H, Mino T (2011) Effect of aspartate and glutamate on the fate of enhanced biological phosphorus removal process and microbial community structure. Bioresour Technol 10:894–903

    Article  Google Scholar 

  • Zhang Y, Yang M, Dou X, He H, Wang D (2005) Arsenate adsorption on an Fe–Ce bi-metal oxide adsorbent: role of surface properties. Environ Sci Technol 39:7246–7253

    Article  CAS  Google Scholar 

  • Zhang GS, Qu JH, Liu HJ, Liu RP, Wu RC (2007a) Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite remove. Water Res 41:1921–1928

    Article  CAS  Google Scholar 

  • Zhang GS, Qu JH, Liu HJ, Liu RP, Li GT (2007b) Removal mechanism of As(III) by a novel Fe–Mn binary oxide adsorbent: oxidation and sorption. Environ Sci Technol 41(13):4613–4619

    Article  CAS  Google Scholar 

  • Zhang GS, Liu HJ, Liu RP, Qu JH (2009a) Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface. J Hazard Mater 168(2–3):820–825

    Article  CAS  Google Scholar 

  • Zhang GS, Liu HJ, Liu RP, Qu JH (2009b) Removal of phosphate from water by a Fe–Mn binary oxide adsorbent. J Colloid Interface Sci 335(2):168–174

    Article  CAS  Google Scholar 

  • Zhang Y, Dou XM, Yang M, He H, Jing CY, Wu ZY (2010) Removal of arsenate from water by using an Fe–Ce oxide adsorbent: effects of coexistent fluoride and phosphate. J Hazard Mater 179:208–214

    Article  CAS  Google Scholar 

  • Zhang G, Khorshed A, Chen JP (2012a) Simultaneous removal of arsenate and arsenite by a nanostructured zirconium-manganese binary hydrous oxide: behavior and mechanism. J Colloid Interface Sci 397:137–143

    Article  Google Scholar 

  • Zhang GS, Liu HJ, Qu JH, Jefferson W (2012b) Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe–Mn binary oxides: Influence of Mn/Fe ratio, pH, Ca2+, and humic acid. J Colloid Interface Sci 366(1):141–146

    Article  CAS  Google Scholar 

  • Zhang L, Zhou Q, Liu JY, Chang N, Wan LH, Chen JH (2012c) Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber. Chem Eng J 185–186:160–167

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of China (grant no. 51208415), the Funds for Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07313-001-02), China Postdoctoral Science Foundation (grant no. 2012M511986), and Research Fund for the Doctoral Program of Higher Education of China (20126120120005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wu.

Additional information

Responsible editor: Angeles Blanco

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, K., Liu, T., Ma, C. et al. The role of Mn oxide doping in phosphate removal by Al-based bimetal oxides: adsorption behaviors and mechanisms. Environ Sci Pollut Res 21, 620–630 (2014). https://doi.org/10.1007/s11356-013-1937-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1937-x

Keywords

Navigation