Skip to main content

Advertisement

Log in

Nanoscale materials and their use in water contaminants removal—a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Water scarcity is being recognized as a present and future threat to human activity and as a consequence water purification technologies are gaining major attention worldwide. Nanotechnology has many successful applications in different fields but recently its application for water and wastewater treatment has emerged as a fast-developing, promising area. This review highlights the recent advances on the development of nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater that are contaminated by toxic metals, organic and inorganic compounds, bacteria and viruses. In addition, the toxic potential of engineered nanomaterials for human health and the environment will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adesina AA (2004) Industrial exploitation of photocatalysis: progress, perspectives and prospects. Catal Surv Asia 8:265–273

    Article  CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals fromwastewater. Bioresour Technol 98:2243–2257

    Article  CAS  Google Scholar 

  • Ahmad AL, Ooi BS, Mohammad AW, Choudhury JP (2004) Development of a highly hydrophobic nanofiltration membrane for desalination and water treatment. Desalination 168:215–221

    Article  CAS  Google Scholar 

  • Akasaka T, Watari F (2009) Capture of bacteria by flexible carbon nanotubes. Acta Biomater 5:607–612

    Article  Google Scholar 

  • Allabashi R, Arkas M, Hörmann G, Tsiourvas D (2007) Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res 41:476–486

    Article  CAS  Google Scholar 

  • Albuquerque JEC, Mendez MO, Coutinho ADR, Franco TT (2008) Removal of cyanobacterial toxins from drinking water by adsorption on activated carbon fibers. Material Res 11:370–80

    Google Scholar 

  • Alvarez-Ayuso E, Garcia-Sanchez A, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37:4855–4862

    Article  CAS  Google Scholar 

  • Amal R, McEvoy S, Beydoun D, Low G (1999) Role of nanoparticles in photocatalysis. J Nanopart Res 1:439–458

    Article  Google Scholar 

  • Anandan S, Lee G-J, Chen P-K, Fan C, Wu JJ (2010) Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi2O3 and Au/Bi2O3 nanorods. Ind Eng Chem Res 49:9729–9737

    Article  CAS  Google Scholar 

  • Arkas M, Tsiourvas D, Paleos CM (2010) Functional dendritic polymers for the development of hybrid materials for water purification. Macromol Mater Eng 295:883–898

    Article  CAS  Google Scholar 

  • Arkas M, Allabashi R, Tsiourvas D, Mattausch E-M, Perfler R (2006) Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ Sci Technol 40:2771–2777

    Article  CAS  Google Scholar 

  • Arkas M, Paleos CM, Eleades L, Tsiourvas D (2005) Alkylated hyperbranched polymers as molecular nanosponges for the purification of water from polycyclic aromatic hydrocarbons. J Appl Polym Sci 97:2299–2305

    Article  CAS  Google Scholar 

  • Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Inter 37:1143–1156

    Article  CAS  Google Scholar 

  • Athanasekou CP, Romanos GE, Katsaros FK, Kordatos K, Likodimos V, Falaras P (2012) Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. J Memb Sci 392:192–203

    Article  CAS  Google Scholar 

  • Atia AA, Donia AM, El-Enein SA, Yousif AM (2007) Effect of chain length of aliphatic amines immobilized on a magnetic glycidyl methacrylate resin towards the uptake behavior of Hg(II) from aqueous solutions. Sep Sci Technol 42:403–420

    Article  CAS  Google Scholar 

  • Bae E, Choi W (2003) Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ Sci Technol 37:147–152

    Article  CAS  Google Scholar 

  • Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  CAS  Google Scholar 

  • Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468

    Article  CAS  Google Scholar 

  • Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1:18–21

    Article  CAS  Google Scholar 

  • Barakat MA, Schaeffer H, Hayes G, Ismat-Shah S (2005) Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl Catal B Environ 57:23–30

    Article  CAS  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465

    Article  CAS  Google Scholar 

  • Bina B, Pourzamani H, Rashidi A, Amin M (2012) Ethylbenzene removal by carbon nanotubes from aqueous solution. J Environ Public Health 817:187–195

    Google Scholar 

  • Bhattacharyya D, Hestekin JA, Brushaber P, Cullen L, Bachas LG, Sikdar SK (1998) Novel poly-glutamic acid functionalized microfiltration embranes for sorption of heavy metals at high capacity. J Membr Sci 141:121–135

    Article  CAS  Google Scholar 

  • Biswas P, Wu C-Y (2005) Nanoparticles and the environment. J AirWaste Manage Assoc 55:708–746

    CAS  Google Scholar 

  • Blount BC, Pirkle JL, Osterloh JD, Valentin-Blasini L, Caldwell KL (2006) Urinary perchlorate and thyroid hormone levels in adolescent and adult men and women living in the United States. Environ Health Pers 114:1865–1871

    CAS  Google Scholar 

  • Borai EH, El-Sofany EA, Morcos TN (2007) Development and optimization of magnetic technologies based processes for removal of some toxic heavy metals. Adsorption 13:95–104

    Article  CAS  Google Scholar 

  • Borker P, Salker AV (2007) Solar assisted photocatalytic degradation of Naphthol Blue Black dye using Ce1 −  x Mn x O2. Mater Chem Phys 103:366–370

    Article  CAS  Google Scholar 

  • Bottero JY, Rose J, Wiesner MR (2006) Nanotechnologies. Tools for sustainability in a new wave of water treatment processes. Integr Environ Assess Manag 2:391–395

    Article  CAS  Google Scholar 

  • Bowman RS (2002) Applications of surfactant-modified zeolites to environmental remediation. Micropor Mesopor Mater 61:43–56

    Article  CAS  Google Scholar 

  • Brant JA, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553

    Article  CAS  Google Scholar 

  • Brady-Estevez AS, Kang S, Elimelech M (2008) A single walled carbon nanotube filter for removal of viral and bacterial pathogens. Small 4:481–484

    Article  CAS  Google Scholar 

  • Bull RJ, Brinbaum LS, Cantor KP, Rose JB, Butterworth BE, Pegram R, Tuomisto J (1995) Water chlorination. Essential process and cancer hazard. Fund Appl Toxicol 28:155–166

    Article  CAS  Google Scholar 

  • Cai YQ, Cai Y, Mou SF, Lu YQ (2005) Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J Chromatogr A 1081:245–247

    Article  CAS  Google Scholar 

  • Camblor MA, Corma A, Valencia S (1998) Synthesis in fluoride media and characterization of aluminosilicate zeolite beta. J Mater Chem 8:2137–2145

    Article  CAS  Google Scholar 

  • Cao J, Elliott D, Zhang W-X (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506

    Article  CAS  Google Scholar 

  • Card JW, Zeldin DC, Bonner JC, Nestmann ER (2008) Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 295:400–511

    Article  CAS  Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  • Celebi O, Uzum C, Shahwan T, Erten HN (2007) A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J Hazard Mater 148:761–767

    Article  CAS  Google Scholar 

  • Chen CZS, Cooper S (2002) Interactions between dendrimer biocides and bacterial membranes. Biomateri 23:3359–3368

    Article  CAS  Google Scholar 

  • Chen L, Wang T, Tong J (2011) Application of derivatized magnetic materials to the separation and the pre-concentration of pollutants in water samples. Trends in Analy Chem 30:207–215

    Google Scholar 

  • Chen Y, Crittenden J, Hackney S, Sutter L, Hand D (2005) Preparation of a novel TiO2-based pn junction nanotube photocatalyst. Environ Sci Technol 39:1201–1208

    Article  CAS  Google Scholar 

  • Cheng R, Wang JL, Zhang WX (2007) Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nano-sized Fe0. J Hazard Mater 144:334–339

    Article  CAS  Google Scholar 

  • Cho IH, Kim YG, Yang JK, Lee NH, Lee SM (2006) Solar-chemical treatment of groundwater contaminated with petroleum at gas station sites: ex situ remediation using solar/TiO2 photocatalysis and solar photo-fenton. J Environ Sci Health A 4:457–473

    Google Scholar 

  • Cho IH, Park JH, Kim YG (2005) Oxidative degradation and toxicity reduction of trichloroethylene (TCE) in water using TiO2/solar light, comparative study of TiO2 slurry and immobilized systems. J Environ Sci Health A 40:1033–1044

    Article  CAS  Google Scholar 

  • Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311

    Article  CAS  Google Scholar 

  • Coetser SE, Heath RG, Ndombe N (2007) Diffuse pollution associated with the mining sectors in South Africa: a first-order assessment. Water Sci Technol 55:9–16

    CAS  Google Scholar 

  • Cohen Y (2006) Membrane surface nano-structuring: selective enhancement, fouling reduction and mineral scale formation. In US-Israeli Nanotechnology for water purification workshop, Arlington, pp 13–16

    Google Scholar 

  • Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  • Daniel-Da-Silva AL, Loio R, Lopes-Da-Silva JA, Trindade T, Goodfellow BJ, Gil AM (2008) Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels. J Colloid Interface Sci 324:205–211

    Article  CAS  Google Scholar 

  • Danilczuk M, Lund A, Saldo J, Yamada H, Michalik J (2006) Conduction electron spin resonance of small silver particles. Spectrochim Acta A 63:189–191

    Article  CAS  Google Scholar 

  • Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998

    Article  CAS  Google Scholar 

  • DeFriend KA, Wiesner MR, Barron AR (2003) Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. J Membr Sci 224:11–28

    Article  CAS  Google Scholar 

  • Del Valle EMM (2004) Cyclodextrins and their uses. A review. Process Biochem 39:1033–1046

    Article  CAS  Google Scholar 

  • Delpla I, Baures E, Jung AV, Clement M, Thomas O (2011) Issues of drinking water quality of small scale water services towards climate change. Water Sci Technol 63:227–32

    Article  CAS  Google Scholar 

  • Deng S, Upadhyayula VKK, Smith GB, Mitchell MC (2008) Adsorption equilibrium and kinetics of microorganisms on single walled carbon nanotubes. IEEE Sens 8:954–62

    Article  CAS  Google Scholar 

  • Deng S, Fan H, Wang M, Zheng M, Yi J, Wu R, Tan H, Sow C, Ding J, Feng Y, Loh K (2010) Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature. ACS Nano 4:495–505

    Article  CAS  Google Scholar 

  • Di Z-C, Ding J, Peng X-J, Li Y-H, Luan Z-K, Liang J (2006) Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 62:861–865

    Article  CAS  Google Scholar 

  • Diallo MS, Christie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis C, Goddard WA, Johnson JH (2004) Dendritic chelating agents 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20:2640–2651

    Article  CAS  Google Scholar 

  • Diallo MS, Christie S, Swaminathan P, Johnson JH, Goddard WA (2005) Dendrimer-enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using Gx-NH2PAMAM dendrimers with ethylene diamine core. Environ Sci Technol 39:1366–1377

    Article  CAS  Google Scholar 

  • Ding L, Zheng Y (2007) Nanocrystalline zeolite beta: the effect of template agent on crystal size. Mater Res Bull 42:584–590

    Article  CAS  Google Scholar 

  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    Article  CAS  Google Scholar 

  • Donaldson K, Tran CL (2004) An introduction to the short-term toxicology of respirable industrial fibres. Mutat Res 553:5–9

    Article  CAS  Google Scholar 

  • Dotzauer DM, Dai J, Sun L, Bruening ML (2006) Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. Nano Lett 6:2268–2272

    Article  CAS  Google Scholar 

  • Dvoranova D, Brezova V, Malati MA (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal B Environ 37:91–105

    Article  CAS  Google Scholar 

  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178

    Article  CAS  Google Scholar 

  • Elliott D, Lien H-L, Zhang W-X (2008) Zerovalent iron nanoparticles for treatment of ground water contaminated by hexachlorocyclohexanes. J Environ Quality 37:2192–2201

    Article  CAS  Google Scholar 

  • Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya JS (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. Mater Sci 41:5208–5212

    Article  CAS  Google Scholar 

  • Falcone IR, Humpage AR (2005) Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. Int J Environ Res Public Health 2:43–50

    Article  Google Scholar 

  • Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanaly Chem 393:81–95

    Article  CAS  Google Scholar 

  • Favre-Reguillon A, Lebuzit G, Fooz J, Guy A (2003) Selective concentration of uranium from seawater by nanofiltration. Ind Eng Chem Res 42:5900–5904

    Article  CAS  Google Scholar 

  • Figueira P, Lopes CB, Daniel-da-Silva AL, Pereira E, Duarte AC, Trindade T (2011) Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters. Water Res 45:5773–5784

    Article  CAS  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  Google Scholar 

  • Frechet JMJ, Tomalia DA (2001) Dendrimers and other dendritic polymers. Wiley, New York

    Book  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275

    Article  CAS  Google Scholar 

  • Girginova PI, Daniel-Da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T (2010) Silica coated magnetite particles for magnetic removal of Hg(II) from water. J Colloid Interface Sci 345:234–240

    Article  CAS  Google Scholar 

  • Gondal MA, Dastageer MA, Khalil A (2009) Synthesis of nano-WO3 and its catalytic activity for enhanced antimicrobial process for water purification using laser induced photo-catalysis. Catal Commu 11:214–219

    Article  CAS  Google Scholar 

  • Guo LM, Li JT, Zhang LX, Li JB, Li YS, Yu CC, Shi JL, Ruan ML, Feng JW (2008) A facile route to synthesize magnetic particles within hollow mesoporous spheres and their performance as separable Hg2+ adsorbents. J Mater Chem 18:2733–2738

    Article  CAS  Google Scholar 

  • Harper S, Usenko C, Hutchison JE, Maddux BLS, Tanguay RL (2008) In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J Exp Nanosciences 3:195–206

    Article  CAS  Google Scholar 

  • Hatchett DW, Henry S (1996) Electrochemistry of sulfur adlayers on the low–index faces of silver. J Phys Chem 100:9854–9859

    Google Scholar 

  • Henmi M, Nakatsuji K, Ichikawa T, Tomioka H, Sakamoto T, Yoshio M, Kato T (2012) Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions. Adv Mater 24:2238–2241

    Article  CAS  Google Scholar 

  • He P, Zhao DY (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320

    Article  CAS  Google Scholar 

  • Hollman AM, Bhattacharyya D (2004) Pore assembled multilayers of charged polypeptides in microporous membranes for ion separation. Langmuir 20:5418–5424

    Article  CAS  Google Scholar 

  • Huang CZ, Hu B (2008) Silica-coated magnetic nanoparticles modified with gammamercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, CuHg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochim Acta B 63:437–444

    Article  CAS  Google Scholar 

  • Hu J, Chen GH, Lo IMC (2005a) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536

    Article  CAS  Google Scholar 

  • Hu J, Tonga Z, Hu Z, Chena G, Chenc T (2012) Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes. J Colloid Interface Sci 377:355–361

    Article  CAS  Google Scholar 

  • Hu JS, Ren LL, Guo YG, Liang HP, Cao AM, Wan LJ, Bai CL (2005b) Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew Chem Int Ed 44:1269–1273

    Article  CAS  Google Scholar 

  • Hyung H, Kim JH (2008) Natural organic matter (NOM) adsorption to multi walled carbon nanotubes: effect on NOM characteristics and water quality parameters. Environ Sci Technol 42:4416–21

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  • Indira TK, Lakshmi PK (2010) Magnetic nanoparticles—a review. Int J Pharm Sci Nanotec 3:1035–1044

    CAS  Google Scholar 

  • Irie H, Watanabe Y, Hashimoto K (2003) Carbon-doped anatase as a visible light-sensitive photocatalyst. Chem Lett 32:772–773

    Article  CAS  Google Scholar 

  • Ji P, Zhang J, Chen F, Anpo M (2009) Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Appl Catal B Environ 85:148–154

    Article  CAS  Google Scholar 

  • Jiang F, Zheng Z, Xu Z, Zheng S, Guo Z, Chen L (2006) Aqueous Cr(VI) photo-reduction catalyzed by TiO2 and sulfated TiO2. J Hazard Mater 134:94–103

    Article  CAS  Google Scholar 

  • Jikei M, Kakimoto M-A (2001) Hyperbranched polymers: a promising new class of materials. Prog Polym Sci 26:1233–1285

    Article  CAS  Google Scholar 

  • Jin J, Li R, Wang H, Chen H, Liang K, Ma J (2007) Magnetic Fe nanoparticle functionalized water-soluble multi-walled carbon nanotubules: towards the preparation of sorbent for aromatic compounds removal. Chem Commun 4:386–388

    Article  CAS  Google Scholar 

  • Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind Eng Chem Res 43:7683–7696

    Article  CAS  Google Scholar 

  • Kamat P, Huehn R, Nicolaescu R (2002) A“sense and shoot” approach for photocatalytic degradation of organic contaminants in water. J Phys Chem B 106:788–794

    Article  CAS  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano-scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050

    Article  CAS  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298

    Article  CAS  Google Scholar 

  • Keum YS, Li QX (2004) Reduction of nitroaromatic pesticides with zerovalent iron. Chemosphere 54:255–263

    Article  CAS  Google Scholar 

  • Khaydarov RA, Khaydarov RR, Gapurova O (2010) Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites. Water Res 44:1927–1933

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KM, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong D-H, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  Google Scholar 

  • Kim J, Buggen BV (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349

    Article  CAS  Google Scholar 

  • Kim KT, Klaine SJ, Cho J, Kim SH, Kim SD (2010) Oxidative stress responses of Daphnia magna exposed to TiO(2) nanoparticles according to size fraction. Sci Total Environ 408:2268–2272

    Article  CAS  Google Scholar 

  • Kirchnerova J, Herrera Cohen M-L, Guy C, Klvana D (2005) Photocatalytic oxidation of n-butanol under fluorescent visible light lamp over commercial TiO2 (Hombicat UV100 and Degussa P25). Appl Catal A Gen 282:321–332

    Article  CAS  Google Scholar 

  • Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48:199–208

    CAS  Google Scholar 

  • Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L (2002) Nanoscale powders and formulations with biocidal activity towards spores and vegetative cells of Bacillus species, viruses, and toxins. Curr Microbiol 44:49–55

    Article  CAS  Google Scholar 

  • Langwaldt JH, Puhakka JA (2000) On-site biological remediation of contaminated groundwater: a review. Environ Pollut 107:187–197

    Article  CAS  Google Scholar 

  • Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6:651–663

    Article  CAS  Google Scholar 

  • Lee J-S, Chon H-T, Kim K-W (2005a) Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environ Geochem Health 27:185–191

    Article  CAS  Google Scholar 

  • Leiknes T (2009) The effect of coupling coagulation and flocculation with membrane filtration in water treatment: a review. J Environ Sci (China) 21:8–12

  • Liga MV, Bryant BF, Colvin VL, Li Q (2011) Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res 45:535–544

    Article  CAS  Google Scholar 

  • Linder C, Oren Y (2006) Relationships between materials parameters of nanofiltration membranes and the resultant membrane performance. In US–Israeli: Nanotechnology for Water Purification Workshop, Arlington, Virginia, USA, March 13–16

  • Li FB, Li XZ, Liu CS, Liu TX (2007) Effect of alumina on photocatalytic activity of iron oxides for bisphenol a degradation. J Hazard Mater 149:199–207

    Article  CAS  Google Scholar 

  • Li HD, Li Z, Liu T, Xiao X, Peng ZH, Deng L (2008) A novel technology for biosorption and recovery hexavalent chromium in wastewater by biofunctional magnetic beads. Bioresour Technol 99:6271–6279

    Article  CAS  Google Scholar 

  • Li L, Fan M, Brown RC, Van Leeuwen J (2006a) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Tech 36:405–431

    Article  CAS  Google Scholar 

  • Li X-Q, Elliott DW, Zhang W-X (2006b) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122

    Article  CAS  Google Scholar 

  • Li Y-H, Ding J, Luan ZK, Di ZC, Zhu YF, Xu CL, Wu DH, Wei BQ (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multi-walled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  • Li X-Q, Zhang W-X (2006) Iron nanoparticles, The core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22:4638–4642

    Article  CAS  Google Scholar 

  • Liu L, Bai H, Sun DD (2012) Concurrent filtration and solar photocatalytic disinfection/ degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res 46:1102–1112

    Google Scholar 

  • Liu Y, Su G, Zhang B, Jiang G, Yan B (2011) Nanoparticle-based strategies for detection and remediation of environmental pollutants. Analyst 136:872–877

    Article  CAS  Google Scholar 

  • Liu Y, Li J, Qiu X, Burda C (2006a) Novel TiO2 nanocatalysts for wastewater purification—tapping energy from the sun. Water Pract Technol 1:1–9

    CAS  Google Scholar 

  • Liu Y, Chen X, Li J, Burda C (2005a) Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere 61:11–18

    Article  CAS  Google Scholar 

  • Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005b) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345

    Article  CAS  Google Scholar 

  • Liu Z, He Y, Li F, Liu Y (2006b) Photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide. Environ Sci Pollut Res Int 13:328–332

    Article  CAS  Google Scholar 

  • Liu J-F, Zhao ZS, Jiang G-B (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954

    Article  CAS  Google Scholar 

  • Long QR, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058–2059

    Article  CAS  Google Scholar 

  • López-Munoz MJ, Van Grieken R, Aguado J, Marugán J (2005) Role of the support on the activity of silica-supported TiO2 photocatalysts: structure of the TiO2/SBA-15 photocatalysts. Catal Today 101:307–314

    Article  CAS  Google Scholar 

  • Lu C, Chiu H (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145

    Google Scholar 

  • Lu C, Chung Y-L, Chang K-F (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39:183–189

    Article  CAS  Google Scholar 

  • Lu C, Chung Y-L, Chang K-F (2006a) Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. J Hazard Mater 138:304–310

    Article  CAS  Google Scholar 

  • Lu C, Chiu H, Liu C (2006b) Removal of zinc(II) from aqueous solution by purified carbon nanotubes: Kinetic and equilibrium studies. Ind Eng Chem Res 45:2850–2855

    Google Scholar 

  • Lu C, Chiu H, Bai H (2007) Comparisons of adsorbent cost for the removal of zinc(II) from aqueous solution by carbon nanotubes and activated carbon. J Nanosci Nanotechnol 7:1647–1652

    Google Scholar 

  • Lu C, Liu L (2006) Removal of nickel(II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81:1932–1940

    Article  CAS  Google Scholar 

  • Madigan M, Martinko J (2005) Brock Biology of Microorganisms, 11th edn. Prentice Hall Publishers, Englewood Cliffs

    Google Scholar 

  • Makhluf S, Dror R, Nitzan Y, Abramovich A, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. S Adv Funct Mater 15:1708–1715

    Article  CAS  Google Scholar 

  • Margeta K, Vojnovi B, Zabukovec LN (2011) Development of natural zeolites for their use in water-treatment systems. Recent Patents on Nanotech 5:89–99

    Article  CAS  Google Scholar 

  • Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51:1–12

    Article  CAS  Google Scholar 

  • Miyagawa H, Misra M, Mohanty AK (2005) Mechanical properties of carbon nanotubes and their polymer nanocomposites. J Nanosci Nanotechnol 5:1593–1615

    Article  CAS  Google Scholar 

  • Mohsen MS, Jaber JO, Afonso MD (2003) Desalination of brackish water by nanofiltration and reverse osmosis. Desalination 157:167–177

    Article  CAS  Google Scholar 

  • Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S (2010) Role of oxidative damage in toxicity of particulates. Free Radic Res 44:1–46

    Article  CAS  Google Scholar 

  • Moon J, Yun CY, Chung K-W, Kang MS, Yi J (2003) Photocatalytic activation of TiO2 under visible light using Acid Red 44. Catal Today 87:77–86

    Article  CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Moreno N, Querol X, Ayora C (2001) Utilization of zeolites synthesized from coal fly ash for the purification of acid mines water. Environ Sci Technol 35:3526–3534

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JP, Yacaman MY (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Mostafavi ST, Mehrnia MR, Rashidi AM (2009) Preparation of nanofilter from carbon nanotubes for application in virus removal from water. Desalination 238:271–280

    Article  CAS  Google Scholar 

  • Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS, Momba MN (2012) Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int J Environ Res Public Health 9:244–71

    Article  CAS  Google Scholar 

  • Nahar S, Hasegawa K, Kagaya S (2006) Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere 65:1976–1982

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Neumann B, Bogdanoff P, Tributsch H, Sakthivel S, Kisch H (2005) Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. J Phys Chem B 109:16579–16586

    Article  CAS  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230

    Article  CAS  Google Scholar 

  • Nutt MO, Heck KN, Alvarez P, Wong MS (2006) Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl Catal B Environ 69:115–125

    Article  CAS  Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Article  CAS  Google Scholar 

  • Oberdörster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder AC (2000) Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst 96:5–86

    Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  CAS  Google Scholar 

  • Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25

    Article  CAS  Google Scholar 

  • Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120

    Article  CAS  Google Scholar 

  • Oh S-M, Kim S-S, Lee JE, Ishigaki T, Park D-W (2003) Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma. Thin Solid Films 435:252–258

    Article  CAS  Google Scholar 

  • Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped photocatalyst under visible light. Chem Lett 32:364–365

    Article  CAS  Google Scholar 

  • Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa P-25) consisting of anatase and rutile crystalline phases. J Catal 203:82–86

    Article  CAS  Google Scholar 

  • Orha C, Pop A, Lazau C, Grozescu I, Tiponut V, Manea F (2011) Structural characterization and the sorption properties of the natural and synthetic zeolite. J Optoelectron Adv Mater 13:544–549

    CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  • Palmer RA, Doan TM, Lloyd PG, Jarvis BL, Ahmed NU (2002) Reduction of TiO2 with hydrogen plasma. Plasma Chem Plasma P 3:335–350

    Article  Google Scholar 

  • Peltier S, Cotte E, Gatel D, Herremans L, Cavard J (2003) Nanofiltration improvements of water quality in a large distribution system. Water Supply 3:193–200

    Google Scholar 

  • Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X (2005) Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res 39:2327–2337

    Article  CAS  Google Scholar 

  • Peng XJ, Li YH, Luan ZK, Di ZC, Wang HY, Tian BH, Jia ZP (2003) Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376:154–158

    Article  CAS  Google Scholar 

  • Peng XJ, Luan ZK, Ding J, Di ZC, Li YH, Tian BH (2005) Ceria nanoparticles supported nanotubes for the removal of arsenate from water. Mater Lett 59:399–403

    Article  CAS  Google Scholar 

  • Pereira R, Rocha-Santos TAP, Antunes FE, Rasteiro MG, Ribeiro R, Gonçalves F, Soares AMVM, Lopes I (2012) Screening evaluation of the ecotoxicity and genotoxicity of soils contaminated with organic and inorganic nanoparticles: the role of ageing. J Haz Mat 194:345–354

    Article  CAS  Google Scholar 

  • Petersen EJ, Nelson BC (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Analy Bioanaly Chem 398:613–650

    Article  CAS  Google Scholar 

  • Poinern GEJ, Parsonage D, Issa TB, Ghosh MK, Paling E, Singh P (2010) Preparation, characterization and As(V) adsorption behaviour of CNT-ferrihydrite composites. IJEST 8:13–24

    Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Qin F, Li G, Wang R, Wu J, Sun H, Chen R (2012) Template-free fabrication of Bi2O3 and (BiO)2CO3 nanotubes and their application in water treatment. Chem Eur J 00

  • Qin JJ, Oo MH, Kekre KA (2007) Nanofiltration for recoveringwastewater from a specific dyeing facility. Sep Pur Tech 56:199–203

    Article  CAS  Google Scholar 

  • Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem Eur J 8:28–35

    Article  CAS  Google Scholar 

  • Ritchie SMC, Kissick KE, Bachas LG, Sikdar SK, Parikh C, Bhattacharyya D (2001) Polycysteine and other polyamino acid functionalized microfiltration membranes for heavy metal capture. Environ Sci Technol 35:3252–3258

    Article  CAS  Google Scholar 

  • Rickerby DG, Morrison M (2007) Nanotechnology and the environment: a European perspective. STAM 8:19–24

    CAS  Google Scholar 

  • Riu J, Maroto A, Rius FX (2006) Nanosensors in environmental analysis. Talanta 69:288–301

    Article  CAS  Google Scholar 

  • Rivas BL, Pereira ED, Moreno-Villoslada I (2003) Water soluble polymer-metal ion interactions. Prog Polym Sci 28:173–208

    Article  CAS  Google Scholar 

  • Romero M, Blanco J, Sanchez B, Vidal A, Malato S, Cardona AI, Garcia E (1999) Solar photocatalytic degradation of water and air pollutants: challenges and perspectives. Solar Energy 66:169–182

    Article  CAS  Google Scholar 

  • Romanos GE, Athanasekou CP, Katsaros FK, Kanellopoulos NK, Dionysiou DD, Likodimos V, Falaras P (2011) Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. J Hazard Mater 211:304–316

    Article  CAS  Google Scholar 

  • Rozell DJ, Reaven SJ (2011) Water pollution risk associated with natural gas extraction from the marcellus shale. Risk Anal 111:1539–6924

    Google Scholar 

  • Rozemeijer JC, Broers HP (2007) The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands). Environ Pollut 148:695–706

    Article  CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physiochemical properties. Toxicol Sci 91:159–165

    Article  CAS  Google Scholar 

  • Sakthivel S, Shankar VM, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V (2004) Enhancement of photocatalytic activity by metal deposition: characterization and photonic efficiency of Pt:Au and Pd deposited on TiO2 catalyst. Water Res 38:3001–3008

    Article  CAS  Google Scholar 

  • Saleh NB, Pfefferle LD, Elimelech M (2008) Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ Sci Technol 42:7963–9

    Article  CAS  Google Scholar 

  • Salipira KL, Mamba BB, Krause RW, Malefetse TJ, Durbach SH (2007) Carbon nanotubes and cyclodextrin polymers for removing organic pollutants from water. Environ Chem Lett 5:13–17

    Article  CAS  Google Scholar 

  • Sánchez A, Recillas S, Font X, Casals E, González E, Puntes V (2011) Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. Trends in Analy Chem 30:507–516

    Article  CAS  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342

    Article  CAS  Google Scholar 

  • Sawicki R, Mercier L (2006) Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media. Environ Sci Technol 40:1978–1983

    Article  CAS  Google Scholar 

  • Schneiderman E, Stalcup AM (2000) Cyclodextrins: a versatile tool in separation science. J Chromatogr B 745:83–102

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  CAS  Google Scholar 

  • Scott RL, Datta S, Gui M, Coker EL, Huggins FE, Daunert S, Bachas L, Bhattacharyya D (2011) Reactive nanostructured membranes for water purification. PNAS 108:8577–8582

    Article  Google Scholar 

  • Sheha RR, El-Zahhar AA (2008) Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions. J Hazard Mater 150:795–803

    Article  CAS  Google Scholar 

  • Shin S, Jang J (2007) Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chem Commun 10:4230–4232

    Article  CAS  Google Scholar 

  • Simate GS, Iyuke SE, Ndlovu S, Heydenrych M, Walubita LF (2012) Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ Inter 39:38–49

    Article  CAS  Google Scholar 

  • Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103:3357–3362

    Article  CAS  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroevee P, Mahmoudm M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343

    Article  CAS  Google Scholar 

  • Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009) Preparation and application of magnetic Fe3O4nanoparticles for wastewater purification. Sep Purif Technol 68:312–319

    Article  CAS  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225-230

    Google Scholar 

  • Smith A (2006) Nanotech—the way forward for clean water? Filtr Separat 43:32–33

    Article  Google Scholar 

  • Som C, Wick P, Krug H, Nowack B (2011) Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ Int 37:1131–1142

    Article  CAS  Google Scholar 

  • Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25:1632–1637

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:1770–1782

    Google Scholar 

  • Song W, Grassian VH, Larsen SC (2005a) High yield method for nanocrystalline zeolite synthesis. Chem Commun 20:2951–2953

    Article  CAS  Google Scholar 

  • Song W, Li G, Grassian VH, Larsen SC (2005b) Development of improved materials for environmental applications: nanocrystalline NaY zeolites. Environ Sci Technol 39:1214–1220

    Article  CAS  Google Scholar 

  • Song W, Justice RE, Jones CA, Grassian VH, Larsen SC (2004) Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5. Langmuir 20:8301–8306

    Article  CAS  Google Scholar 

  • Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Carbon nanotube filters. Nature Mate 3:610–614

    Article  CAS  Google Scholar 

  • Stanton BW, Harris JJ, Miller MD, Bruening ML (2003) Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes. Langmuir 19:7038–7042

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Sprenger C, Lorenzen G, Hülshoff I, Grützmacher G, Ronghang M, Pekdeger A (2011) Vulnerability of bank filtration systems to climate change. Sci Total Environ 15:655–663

    Article  CAS  Google Scholar 

  • Strathmann H (2001) Membrane separation processes: current relevance and future opportunities. AIChE J 47:1077–1087

    Article  CAS  Google Scholar 

  • Sun Y-P, Li X-Q, Cao J, Zhang W-X, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56

    Article  CAS  Google Scholar 

  • Sun D, Meng TT, Loong TH, Hwa TJ (2004) Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane. Wat Sci Technol 49:103–110

    CAS  Google Scholar 

  • Tavolaro A, Tavolaro P, Drioli E (2007) Zeolite inorganic supports for BSA immobilization: comparative study of several zeolite crystals and composite membranes. Colloids Surf B Biointerfaces 55:67–76

    Article  CAS  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    Article  CAS  Google Scholar 

  • Tick GR, Lourenso F, Wood AL, Brusseau ML (2003) Pilot-scale demonstration of cyclodextrin as a solubility-enhancement agent for remediation of a tetrachloroethene-contaminated aquifer. Environ Sci Technol 37:5829–5834

    Article  CAS  Google Scholar 

  • Tofighy MA, Mohammadi T (2011) Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mate 185:140–147

    Article  CAS  Google Scholar 

  • Top A, Ülkü S (2004) Silver, zinc and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl Clay Sci 27:13–19

    Article  CAS  Google Scholar 

  • Tully DC, Frechet JMJ (2001) Dendrimers at surfaces and interfaces: chemistry and applications. J Chem Commun 14:1229–1239

    Article  CAS  Google Scholar 

  • Tuutijärvi T, Lu J, Sillanpää M, Chen G (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 66:1415–1420

    Article  CAS  Google Scholar 

  • Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200

    Article  CAS  Google Scholar 

  • Upadhyayula KKV, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ 408:1–13

    Article  CAS  Google Scholar 

  • Urbansky ET, Schock MR (1999) Issues in managing the risks associated with perchlorate in drinking water. J Environ Manage 56:79–95

    Article  Google Scholar 

  • US Environmental Protection Agency (1998) Microbial and disinfection by-product rules. Federal Register 63: 69389–69476

    Google Scholar 

  • US Environmental Protection Agency (1999) Alternative disinfectants and oxidants guidance manual. EPA Office of Water Report 815-R-99-014.

  • Uzum C, Shahwan T, Eroglu AE, Hallam KR, Scott TB, Lieberwirth I (2009) Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl Clay Sci 43:172–181

    Article  CAS  Google Scholar 

  • Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122:435–445

    Article  Google Scholar 

  • Vaseashta A, Vaclavikova M, Vaseashta S, Gallios G, Roy P, Pummakarnchana O (2007) Nanostructures in environmental pollution detection, monitoring, and remediation. STAM 8:47–59

    CAS  Google Scholar 

  • Viessman W, Hammer MJ, Perez EM, Chadik PA (2008) Water supply and pollution control, 8th edn. Addison-Wesley Longman Publishers, Menlo Park

    Google Scholar 

  • Vuković GD, Marinković AD, Čolić M, Ristić DM, Radoslav A, Aleksandra AP-G, Uskoković PS (2010) Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chemical Eng J 157:238–248

    Article  CAS  Google Scholar 

  • Walha K, Amar BR, Firdaous L, Quéméneur F, Jaouen P (2007) Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison. Desalination 207:95–106

    Article  CAS  Google Scholar 

  • Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW, Zhang F, Zhao YL, Chai ZF (2006) Acute toxicity of nano- and microscale zinc powder in healthy adult mice. Toxicol Lett 161:115–123

    Article  CAS  Google Scholar 

  • Wang H, Yang L, Yu H, Peng F (2011) A highly efficient and stable visible-light plasmonic photocatalyst Ag–AgCl/CeO2. WJNSE 1:129–136

    CAS  Google Scholar 

  • Warner CL, Addleman RS, Cinson AD, Droubay TC, Engelhard MH, Nash MA, Yantasee W, Warner MG (2010) High-performance, superparamagnetic, nanoparticle- based heavy metal sorbents for removal of contaminants from natural waters. ChemSusChem 3:749–757

    Article  CAS  Google Scholar 

  • Wegmann M, Michen B, Graule T (2008) Nanostructured surface modification of microporous ceramics for efficient virus filtration. J Eur Ceram Soc 28:1603–1612

    Article  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  CAS  Google Scholar 

  • Xu X, Zhou M, He P, Hao Z (2005) Catalytic reduction of chlorinated and recalcitrant compounds in contaminated water. J Hazard Mater 123:89–93

    Article  CAS  Google Scholar 

  • Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108

    Article  CAS  Google Scholar 

  • Yan XM, Shi BY, Lu JJ, Feng CH, Wang DS, Tang HX (2008) Adsorption and desorption of atrazine on carbon nanotubes. J Colloid Interface Sci 321:30–38

    Article  CAS  Google Scholar 

  • Yan H, Gong A, He H, Zhou J, Wei Y, Lv L (2006) Adsorption of microcystins by carbon nanotubes. Chemosphere 62:142–8

    Article  CAS  Google Scholar 

  • Yang MC, Yang TS, Wong MS (2004) Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition. Thin Solid Films 469:1–5

    Article  CAS  Google Scholar 

  • Yang J, Zhang J, Zhu L, Chen S, Zhang Y, Tang Y, Zhua Y, Li Y (2006) Synthesis of nano-titania particles embedded in mesoporous SBA-15: characterization and photocatalytic activity. J Hazard Mater 137:952–958

    Article  CAS  Google Scholar 

  • Yang GCC, Lee H-L (2005) Chemical reduction of nitrate by nano-sized iron, kinetics and pathways. Water Res 39:884–894

    Article  CAS  Google Scholar 

  • Yang GCC, Li CJ (2008) Tubular TiO2/Al2O3 composite membranespreparation, characterization and performance in electrofiltration of oxide-CMP wastewater. Desalination 234:354–361

    Article  CAS  Google Scholar 

  • Yang Y, Ren N, Zhang Y, Tang Y (2009) Nanosized cadmium sulfide in polyelectrolyte protected mesoporous sphere: a stable and regeneratable photocatalyst for visible-light-induced removal of organic pollutants. J Photochem Photobiol A Chem 201:111–120

    Article  CAS  Google Scholar 

  • Yates CR, Hayes W (2004) Synthesis and applications of hyperbranched polymers. Eur Polym J 40:1257–1281

    Article  CAS  Google Scholar 

  • Yu JC, Ho W, Yu J, Yip H, Wong PK, Zhao J (2005) Efficient visible light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39:1175–1179

    Article  CAS  Google Scholar 

  • Yu JC, Wu L, Lin J, Li P, Li Q (2003) Microemulsion-mediated solvo-thermal synthesis of nanosized CdS-sensitized TiO2 crystalline photocatalyst. Chem Commun 8:1552–1553

    Article  CAS  Google Scholar 

  • Zeman LJ, Zydney AL (1996) Microfiltration and ultrafiltration principles and applications. Marcel Dekker, New York

    Google Scholar 

  • Zhai R, Wan Y, Liu L, Zhang X, Wang W, Liu J, Zhang B (2012) Hierarchical MnO2 nanostructures: synthesis and their application in water treatment. Water Sci Technol 65:1054–1059

    Article  CAS  Google Scholar 

  • Zhai Y, Zhang S, Pang H (2007) Preparation, characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant. Mater Lett 61:1863-1866

    Google Scholar 

  • Zhang LD, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5:128–142

    Article  CAS  Google Scholar 

  • Zhang H, Quan X, Chen S, Zhao H, Zhao Y (2006) Fabrication of photocatalyticmembrane and evaluation its efficiency in removal of organic pollutants from water. Sep Purif Technol 50:147–155

    Article  CAS  Google Scholar 

  • Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang W-X, Wang CB, Lien HL (1998a) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395

    Article  CAS  Google Scholar 

  • Zhang Z, Wang C-C, Zakaria R, Ying JY (1998b) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102:10871–10878

    Article  CAS  Google Scholar 

  • Zhang X, Zhang F, Chan KY (2005) Synthesis of titania-silica mixed oxide mesoporous materials, characterization and photocatalytic properties. Appl Catal A 284:193–198

    Article  CAS  Google Scholar 

  • Zhan W-X, Elliott DW (2006) Applications of iron nanoparticles for groundwater remediation. Remediation 16:7–21

    Article  Google Scholar 

  • Zhao GJ, Stevens SE (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11:27–32

    Article  CAS  Google Scholar 

  • Zhao X, Wang J, Wu F, Wang T, Cai Y, Shi Y, Jiang G (2010) Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles. J Hazard Matter 173:102–109

    Article  CAS  Google Scholar 

  • Zhou Q, Xiao J, Wang W (2006a) Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. J Chromatogr A 1125:152–158

    Article  CAS  Google Scholar 

  • Zhou Q, Xiao J, Wang W, Li G, Shi Q, Wang J (2006b) Determination of atrazine and simazine in environmental water samples using multi-walled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector. Talanta 68:1309–1315

    Article  CAS  Google Scholar 

  • Zhou Q, Xiao J, Wang W (2007) Comparison of multi-walled carbon nanotubes and a conventional absorbent on the enrichment of sulfonylurea herbicides in water samples. Anal Sci 23:189–192

    Article  Google Scholar 

  • Zhu S, Oberdörster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C(60)) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:S5–S9

    Article  CAS  Google Scholar 

  • Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Iram Mohmood (SFRH/BD/74410/2010), Claúdia Batista Lopes (SFRH/BPD/45156/2008), Isabel Lopes, Iqbal Ahmad, Armando Duarte and Eduarda Pereira are grateful to the Portuguese Foundation for Science and Technology (FCT), FSE and POPH funds (Programa Ciência 2007) and the Aveiro University Research Institute/Centre for Environmental and Marine Studies (CESAM) for partial financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iram Mohmood.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohmood, I., Lopes, C.B., Lopes, I. et al. Nanoscale materials and their use in water contaminants removal—a review. Environ Sci Pollut Res 20, 1239–1260 (2013). https://doi.org/10.1007/s11356-012-1415-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1415-x

Keywords

Navigation