Skip to main content
Log in

The reciprocal relation between lightning and pollution and their impact over Kolkata, India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aerosol loading in the atmosphere can cause increased lightning flashes, and those lightning flashes produce NO X , which reacts in sun light to produce surface ozone. The present study deals with the effect of surface pollutants on premonsoon (April–May) lightning activity over the station Kolkata (22.65° N, 88.45° E). Seven-year (2004–2010) premonsoon thunderstorms data are taken for the study. Different parameters like aerosol optical depth and cloud top temperature from the Moderate Resolution Imaging Spectroradiometer satellite products along with lightning flash data from Tropical Rainfall Measuring Mission’s (TRMM) Lightning Imaging Sensor are analyzed. Some surface pollution parameters like suspended particulate matter, particulate matter 10, nitrogen oxides (NO X ), and surface ozone (O3) data during the same period are taken account for clear understanding of their association with lightning activity. Heights of convective condensation level and lifting condensation level are collected from radiosonde observations to anticipate about cloud base. It is found that increased surface pollution in a near storm environment is related to increased lightning flash rate, which results in increased surface NO X and consequently increased surface ozone concentration over the station Kolkata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bell TL, Rosenfeld D, Kim KM, Yoo JM, Lee MI, Hahnenberger M (2008) Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J Geophys Res 113:D02209. doi:10.1029/2007JD008623

    Article  Google Scholar 

  • Bell TL, Rosenfeld D, Kim KM (2009) Weekly cycle of lightning: evidence of storm invigoration by pollution. Geophys Res Lett 36:L23805. doi:10.1029/2009GL040915

    Article  Google Scholar 

  • Boccippio D J, Driscoll K, Hall J. Buechler, D E (1998) LIS/OTD Software guide. Global hydrology and climate center, 142

  • Boccippio DJ, Koshak WJ, Blakeslee RJ (2002) Performance assessment of the optical transient detector and lightning imaging sensor. Part I: predicted diurnal variability. J Atmos Ocean Technol 19:1318–1332

    Article  Google Scholar 

  • Bréon FM, Tanré D, Generoso S (2002) Aerosol effect on cloud droplet size monitored from satellite. Science 295(5556):834–838

    Article  Google Scholar 

  • Cecil DJ, Goodman SJ, Boccippio DJ, Zipser EJ, Nesbitt SW (2005) Three years of TRMM precipitation features. Part I: radar, radiometric, and lightning characteristics. Mon Weather Rev 133:543–566

    Article  Google Scholar 

  • Changnon SA, Semonin RG, Auer AH, Braham RR Jr, Hales JM (1981) METROMEX: a review and summary. Meteorol Monogr 18:181

    Google Scholar 

  • Chaudhuri S (2008a) Identification of the level of downdraft formation during severe thunderstorms: a frequency domain analysis. Meteorol Atmos Phys 102:123–129

    Article  Google Scholar 

  • Chaudhuri S (2008b) Preferred type of cloud in the genesis of severe thunderstorms—a soft computing approach. Atmos Res 88:149–156

    Article  Google Scholar 

  • Chaudhuri S (2010a) Convective energies in forecasting severe thunderstorms with one hidden layer neural net and variable learning rate back propagation algorithm. Asia - Pacific J Atmos Sci 46(2):173–183

    Article  Google Scholar 

  • Chaudhuri S (2010b) Predictability of severe thunderstorms with fractal dimension approach. Asian J Water Air Environ Pollut 7(4):81–87

    Google Scholar 

  • Chaudhuri S (2011a) Implementation of intuitionistic fuzzy logic to assess the predictability of severe thunderstorms. Asia-Pac J Atmos Sci 47(5):477–483

    Article  Google Scholar 

  • Chaudhuri S (2011b) A probe for consistency in CAPE and CINE during the prevalence of severe thunderstorms: statistical-fuzzy coupled approach. Atmos Clim Sci 4(1):197–205

    Google Scholar 

  • Chaudhuri S, Middey A (2011a) Adaptive neuro-fuzzy inference system to forecast peak gust speed during thunderstorms. Meteorol Atmos Phys 114:139–149

    Article  Google Scholar 

  • Chaudhuri S, Middey A (2011b) Nowcasting thunderstorms with graph spectral distance and entropy estimation. Meteorol Appl 18:238–249

    Article  Google Scholar 

  • Craven JP, Jewell RE, Brooks HE (2002) Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea Forecast 17:885–890

    Article  Google Scholar 

  • DeCaria AJ, Pickering KE, Stenchikov GL, Ott LE (2005) Lightning-generated NOX and its impact on tropospheric ozone production: a three-dimensional modeling study of a stratosphere-troposphere experiment: Radiation, Aerosols and Ozone (STERAO-A) thunderstorm. J Geophys Res 110:D14303. doi:10.1029/2004JD005556

    Article  Google Scholar 

  • Hobbs PV, Harrison H, Robinson E (1974) Atmospheric effects of pollutants: pollutants which affect clouds are most likely to produce modifications in weather and climate. Science 183:909–915

    Article  CAS  Google Scholar 

  • Kar SK, Ha KJ (2003) Characteristics differences of rainfall and cloud-to-ground lightning activity over South Korea during the summer monsoon season. Mon Weather Rev 131:2312–2323

    Article  Google Scholar 

  • Khain A, Rosenfeld D, Pokrovsky A (2005) Aerosol impact on the dynamics and microphysics of deep convective clouds. Q J Roy Meteorol Soc 131:2639–2663. doi:10.1256/qj.04.62

    Article  Google Scholar 

  • Khain AP, BenMoshe N, Pokrovsky A (2008) Factors determining the impact of aerosols on surface precipitation from clouds: an attempt at classification. J Atmos Sci 65:1721

    Article  Google Scholar 

  • Lal DM, Pawar SD (2009) Relationship between rainfall and lightning over central Indian region in monsoon and premonsoon seasons. Atmos Res 92:402–410

    Article  Google Scholar 

  • Li Z, Niu F, Fan J, Liu Y, Rosenfeld D, Ding Y (2011) Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci 4:888–894

    Article  CAS  Google Scholar 

  • Liou YA, Kar SK (2010) Study of cloud-to-ground lightning and precipitation and their seasonal and geographical characteristics over Taiwan. Atmos Res 95:115–122

    Article  Google Scholar 

  • Lyons WA, Nemson TE, Williams ER, Cramer JA, Turner TR (1998) Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires. Science 282(5386):77–80

    Article  CAS  Google Scholar 

  • NASA/Goddard Space Flight Center. Lightning’s ‘NOx-ious’ impact on pollution, climate. ScienceDaily, 30 Oct. 2009. Web. 16 May 2012

  • Orville RR, Huffines G, Gammon JN, Zhang R, Ely B, Steiger S, Phillips S, Allen S, Read W (2001) Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys Res Lett 28(13):2597–2600

    Article  Google Scholar 

  • Pawar V, Pawar SD, Beig G, Sahu SK (2012) Effect of lightning activity on surface NO x  and O3 over a tropical station during premonsoon and monsoon seasons. J Geophys Res 117:D05310. doi:10.1029/2011JD016930

    Article  Google Scholar 

  • Petersen WA, Rutledge SA (1998) On the relationship between cloud-to-ground lightning and convective rainfall. J Geophys Res 103:14 025–14 040

    Google Scholar 

  • Pinto IRCA, Pinto O Jr, Gomes MASS, Ferreira NJ (2004) Urban effect on the characteristics of cloud-to-ground lightning over Belo Horizonte-Brazil. Ann Geophys 22:697–700

    Article  CAS  Google Scholar 

  • Qie X, Yuan T, Xie Y et al (2004) Spatial and temporal distribution of lightning activities over the Tibetan plateau. Chin J Geophys 47(6):997–1002

    Google Scholar 

  • Rogers RR and Yau MK (1989) A short course in cloud physics, 3rd edn. Pergamon Press, Oxford

  • Soriano LR, Pablo F (2002) Effect of small urban areas in central Spain on the enhancement of cloud-to-ground lightning activity. Atmos Environ 36:2809–2816

    Article  CAS  Google Scholar 

  • Soriano LR, Pablo FD, Diez EG (2001) Relationship between convective precipitation and cloud-to-ground lightning in the Iberian Peninsula. Mon Weather Rev 129:2998–3003

    Article  Google Scholar 

  • Steiger SM, Orville RE, Huffines G. (2002) Cloud-to-ground lightning characteristics over Houston, Texas: 1989–2000. J Geophys Res 107:D11. doi.org/10.1029/2001JD001142

  • Tie X, Madronich S, Walters S, Zhang R, Rasch P, Collins W (2003) Effect of clouds on photolysis and oxidants in the troposphere. J Geophys Res 108:4642. doi:10.1029/2003JD003659

    Article  Google Scholar 

  • Trenberth KE, Miller K, Mearns L, Rhodes S (2000) Effects of changing climate on weather and human activities. University Science Books, Sausalito

  • Wang Y, Wan Q, Meng W, Liao F, Tan H, Zhang R (2011) Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China. Atmos Chem Phys 11:12421–12436

    Article  CAS  Google Scholar 

  • Westcott NE (1995) Summertime cloud-to-ground lightning activity around major Midwestern urban areas. J Appl Meteorol 34:1633–1642

    Article  Google Scholar 

  • Williams ER, Stanfill S (2002) The physical origin of the land–ocean contrast in lightning activity. CR Phys 3:1277–1292

    Article  CAS  Google Scholar 

  • Williams ER, Mushtak V, Rosenfeld D, Goodman S, Boccippio D (2005) Thermodynamic conditions favourable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos Res 76:288–306

    Article  Google Scholar 

  • Yuan T, Qie X (2008) Study on lightning activity and precipitation characteristics before and after the onset of the South China Sea summer monsoon. J Geophys Res 113:D14101. doi:10.1029/2007JD009382

    Article  Google Scholar 

  • Yuan T, Remer LA, Pickering KE, Yu H (2011) Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys Res Lett 38:L04701. doi:10.1029/2010GL046052

    Google Scholar 

  • Zhoua Y, Soulab S, Pontb V, Qiea X (2005) NOx ground concentration at a station at high altitude in relation to cloud-to-ground lightning flashes. Atmos Res 75:47–69

    Article  Google Scholar 

Download references

Acknowledgment

Authors acknowledge the India Meteorological Department (IMD), West Bengal Pollution Control Board (WBPCB), Goddard Earth Science Data and Information Services Center (GES DISC), and NASA’s Global Hydrology and Climate Center (GHCC) for making data available for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Middey.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middey, A., Chaudhuri, S. The reciprocal relation between lightning and pollution and their impact over Kolkata, India. Environ Sci Pollut Res 20, 3133–3139 (2013). https://doi.org/10.1007/s11356-012-1219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1219-z

Keywords

Navigation