Abstract
Introduction
From December 2008 to November 2009, an investigation of water quality was performed in the 70-km long downstream from Gezhouba Dam in Yangtze River.
Methods
Twelve sites in all were chosen. Nine parameters of water quality including the total phosphorus, the total nitrogen, chlorophyll a (Chl.a), nitrite, nitrate, ammonia, water temperature, DO, and pH were monitored almost monthly. The multivariate statistical technique (cluster analysis) and the nonparametric method (Kruskal–Wallis Test and Spearman’s rank correlation) were applied to evaluate the spatiotemporal variations of water quality data sets.
Results and discussion
According to the Chinese environmental quality standards for surface water (GB3838-2002), the water quality in the river section investigated can attain to the III water standards except total nitrogen. Further analysis indicated that there were no significant spatial differences in these parameters of water quality, but the sampling date had a significant effect. The temporal variation of water quality can be related to the discharge of Gezhouba Dam and moreover be affected by the reservoir regulation. During the discharge, the discharge increased the concentration of total phosphorus and then decreased the N:P ratio, which helps to the occurrence of algae blooms. The high consternation of phosphorus and the low N:P ratio show that the water body can be in the process of eutrophication during the discharge of Gezhouba Dam. In fact, Chl.a had begun to rise in the same period.








Similar content being viewed by others

Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bianchi TS, Engelhaupt E, Westman P, Andren T, Rolff C, Elmgren R (2000) Cyanobacterial blooms in the Baltic Sea: natural or human-induced? Limnol Oceanogr 45(3):716–726
Cao Z, Zhang X, Ai N (2011) Effect of sediment on concentration of dissolved phosphorus in the Three Gorges Reservoir. Int J Sediment Res 26(1):87–95. doi:10.1016/s1001-6279(11)60078-4
Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
Chai C, Yu Z, Shen Z, Song X, Cao X, Yao Y (2009) Nutrient characteristics in the Yangtze River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam. Sci Total Environ 407(16):4687–4695. doi:10.1016/j.scitotenv.2009.05.011
Duan S, Liang T, Zhang S, Wang L, Zhang X, Chen X (2008) Seasonal changes in nitrogen and phosphorus transport in the lower Changjiang River before the construction of the Three Gorges Dam. Estuar Coast Shelf Sci 79(2):239–250. doi:10.1016/j.ecss.2008.04.002
Hilton J, O'Hare M, Bowes MJ, Jones JI (2006) How green is my river? A new paradigm of eutrophication in rivers. Sci Total Environ 365(1–3):66–83. doi:10.1016/j.scitotenv.2006.02.055
Hu J, Liu J, Liu Y (2009) Phosphorus in suspended matter and sediments of a hypertrophic lake. A case study: Lake Dianchi, China. Environ Geol 58(4):833–841. doi:10.1007/s00254-008-1559-7
Kim T-H, Lee Y-W, Kim G (2010) Hydrographically mediated patterns of photosynthetic pigments in the East/Japan Sea: low N:P ratios and cyanobacterial dominance. J Mar Syst 82(1–2):72–79. doi:10.1016/j.jmarsys.2010.03.005
Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33(6):1441–1450. doi:10.2307/2404783
Li S, Liu W, Gu S, Cheng X, Xu Z, Zhang Q (2009) Spatio-temporal dynamics of nutrients in the upper Han River basin, China. J Hazard Mater 162(2–3):1340–1346. doi:10.1016/j.jhazmat.2008.06.059
Liu L, Zhou J, An X, Zhang Y, Yang L (2010) Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China. Expert Syst Appl 37(3):2517–2521. doi:10.1016/j.eswa.2009.08.004
Müller B, Berg M, Yao ZP, Zhang XF, Wang D, Pfluger A (2008) How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam. Sci Total Environ 402(2–3):232–247. doi:10.1016/j.scitotenv.2008.04.049
Nyenje PM, Foppen JW, Uhlenbrook S, Kulabako R, Muwanga A (2010) Eutrophication and nutrient release in urban areas of sub-Saharan Africa—a review. Sci Total Environ 408(3):447–455. doi:10.1016/j.scitotenv.2009.10.020
Quirós R (2002) The nitrogen to phosphorus ratio for lakes: A cause or a consequence of aquatic biology? El Agua en Iberoamerica: De la Limnología a la Gestion en Sudamerica. CYTED XVII, Centro de Estudios Transdiciplinarios del Agua, Facultad de Veterinaria, Universidad de Buenos Aires, Buenos Aires
Rixen T, Baum A, Sepryani H, Pohlmann T, Jose C, Samiaji J (2010) Dissolved oxygen and its response to eutrophication in a tropical black water river. J Environ Manage 91(8):1730–1737. doi:10.1016/j.jenvman.2010.03.009
Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195(4275):260–262. doi:10.1126/science.195.4275.260
Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci 105(32):11254–11258. doi:10.1073/pnas.0805108105
Smith V (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221(4611):669–671. doi:10.1126/science.221.4611.669
Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100(1–3):179–196. doi:10.1016/s0269-7491(99)00091-3
Stelzer RS, Lamberti GA (2001) Effects of N:P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnol Oceanogr 46(2):356–367. doi:10.4319/lo.2001.46.2.0356
Tang C, Liu C (2006) Non-point source pollution of Wujiang River watershed in Guizhou Province, SW China. Chin J Geochem 25:141–142. doi:10.1007/bf02840012
Vega M, Pardo R, Barrado E, Debán L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32(12):3581–3592. doi:10.1016/s0043-1354(98)00138-9
Wang Y, Xia Z (2009) Assessing spawning ground hydraulic suitability for Chinese sturgeon (Acipenser sinensis) from horizontal mean vorticity in Yangtze River. Ecol Model 220(11):1443–1448. doi:10.1016/j.ecolmodel.2009.03.003
Yang Y, Z-m Y, J-b C (2008) Hydrodynamic characteristics of Chinese sturgeon spawning ground in Yangtze River. J Hydrodyn Ser B 20(2):225–230. doi:10.1016/s1001-6058(08)60050-5
Yuan X, Shen Z, Deng X, Gao Y (2006) Characteristics of trace elements in contaminated rivers and their environmental significance. Chin J Geochem 25:140–141. doi:10.1007/bf02840010
Zhang J, Liu SM, Ren JL, Wu Y, Zhang GL (2007) Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progr Oceanogr 74(4):449–478. doi:10.1016/j.pocean.2007.04.019
Zhou S, Jin B, Guo L, Qin H, Chu T, Wu J (2009) Spatial distribution of zooplankton in the intertidal marsh creeks of the Yangtze River Estuary, China. Estuar Coast Shelf Sci 85(3):399–406. doi:10.1016/j.ecss.2009.09.002
Zhu Z-Y, Ng W-M, Liu S-M, Zhang J, Chen J-C, Wu Y (2009) Estuarine phytoplankton dynamics and shift of limiting factors: a study in the Changjiang (Yangtze River) Estuary and adjacent area. Estuar Coast Shelf Sci 84(3):393–401. doi:10.1016/j.ecss.2009.07.005
Acknowledgments
This study was supported by Ministry of Water Resources’ special funds for scientific research on public causes (Grant No. 200801035-3, 200701008 and 200901010).
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Philippe Garrigues
Rights and permissions
About this article
Cite this article
Hu, J., Qiao, Y., Zhou, L. et al. Spatiotemporal distributions of nutrients in the downstream from Gezhouba Dam in Yangtze River, China. Environ Sci Pollut Res 19, 2849–2859 (2012). https://doi.org/10.1007/s11356-012-0791-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-012-0791-6