Skip to main content
Log in

Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background, aim and scope

Lead (Pb) accumulation in soils affects plants primarily through their root systems. The aim of this study was to investigate early symptoms of the loss of membrane integrity and lipid peroxidation in root tissues and physiological adaptation mechanism to Pb in accumulating ecotypes (AE) and non-accumulating ecotypes (NAE) of Sedum alfredii under Pb stress in hydroponics.

Methods and results

Histochemical in situ analyses, fluorescence imaging, and normal physiological analysis were used in this study. Pb accumulation in roots of both AE and NAE increased linearly with increasing Pb levels (0–200 μM), and a significant difference between both ecotypes was noted. Both loss of plasma membrane integrity and lipid peroxidation in root tissues became serious with increasing Pb levels, maximum tolerable Pb level was 25 and 100 μM for NAE and AE, respectively. Pb supplied at a toxic level caused a burst of reactive oxygen species (ROS) in root cells in both ecotypes. However, the root cells of AE had inherently higher activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), and lipoxygenase (LOX) in control plants, and the induction response of these antioxidant enzymes occurred at lower Pb level in AE than NAE. AE plants maintained higher ascorbic acid and H2O2 concentrations in root cells than NAE when exposed to different Pb levels, and Pb induced more increase in dehydroascorbate (DHA), catalase (CAT), and ascorbate peroxidase (APX) in AE than NAE roots.

Discussion and conclusion

Results indicate that histochemical in situ analyses of root cell death and lipid peroxidation under Pb short-term stress was sensitive, reliable, and fast. Higher tolerance in roots of accumulating ecotype under Pb stress did depend on effective free oxygen scavenging by making complex function of both constitutively higher activities and sensitive induction of key antioxidant enzymes in root cells of S. alfredii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AE:

Lead accumulating ecotypes of Sedum alfredii

APX:

Ascorbate peroxidase

AsA:

Ascorbate

AsA+DHA:

Total ascorbate

CAT:

Catalase

DHA:

Dehydroascorbate

DTNB:

5,5′-Dithiobis 2-nitrobenzoic acid

DW:

Dry weight

FW:

Fresh weight

GSH:

Glutathione

H2DCFDA:

5-(and-6)-Carboxy-2′,7′-dichlorofluorescein diacetate

H2O2 :

Hydrogen peroxide

LOX:

Lipoxygenase

MDA:

Malondialdehyde

NAE:

Lead non-accumulating ecotypes of Sedum alfredii

NBT:

Nitroblue tetrazolium

O -2 :

Superoxide anion

PCs:

Phytochelatins

POD:

Guaiacol peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Brennan MA, Shelley ML (1999) A model of the uptake, translocation, and accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol Eng 12(3–4):271–297

    Article  Google Scholar 

  • Chrysafopoulou E, Kadukova J, Kalogerakis N (2005) A whole-plant mathematical model for the phytoextraction of lead (Pb) by maize. Environ Int 31(2):255–262

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57(5):779–795

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146(3):359–388

    Article  CAS  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16(8):2176–2191

    Article  CAS  Google Scholar 

  • Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD (2009) Antioxidant defence mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172(1):479–484

    Article  CAS  Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177(1–3):437–444

    Article  CAS  Google Scholar 

  • He B, Yang XE, Ni WZ, Wei YZ, Long XX, Ye ZQ (2002) Sedum alfredii: a new lead-accumulating ecotype. Acta Bot Sin 44(11):1365–1370

    CAS  Google Scholar 

  • Huang TL, Huang HJ (2008) ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead. Chemosphere 71(7):1377–1385

    Article  CAS  Google Scholar 

  • Huang HG, Li TX, Tian SK, Gupta DK, Zhang XZ, Yang XE (2008) Role of EDTA in alleviating lead toxicity in accumulator species of Sedum alfredii H. Bioresour Technol 99(14):6088–6096

    Article  CAS  Google Scholar 

  • Islam E, Yang X, Li TQ, Liu D, Jin XF, Meng FH (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147(3):806–816

    Article  CAS  Google Scholar 

  • Jiang WS, Liu DH (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10(1):1–8

    Article  CAS  Google Scholar 

  • Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2007) Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ Pollut 150(2):280–287

    Article  CAS  Google Scholar 

  • Liu D, Li TQ, Jin XF, Yang XE, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50(2):129–140

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30(6):1919–1926

    Article  CAS  Google Scholar 

  • Malecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Biochim Pol 48(3):687–698

    CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65(6):1027–1039

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Phys 52:561–591

    Article  CAS  Google Scholar 

  • Qureshi MI, Israr M, Abdin MZ, Iqbal M (2005) Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ Exp Bot 53(2):185–193

    Article  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60(1):97–104

    Article  CAS  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29(8):1532–1544

    Article  CAS  Google Scholar 

  • Rucinska R, Waplak S, Gwozdz EA (1999) Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol Biochem 37(3):187–194

    Article  CAS  Google Scholar 

  • Ruley AT, Sharma NC, Sahi SV (2004) Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol Biochem 42(11):899–906

    Article  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53(372):1305–1319

    Article  CAS  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci 170(2):274–282

    Article  CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2005) Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Phytochemistry 66(21):2549–2556

    Article  CAS  Google Scholar 

  • Tausz M, Pilch B, Rennenberg H, Grill D, Herschbach C (2004) Root uptake, transport, and metabolism of externally applied glutathione in Phaseolus vulgaris seedlings. J Plant Physiol 161(3):347–349

    Article  CAS  Google Scholar 

  • Tian SK, Lu LL, Yang XE, Webb SM, Du YH, Brown PH (2010) Spatial imaging and speciation of lead in the accumulator plant Sedum affredii by microscopically focused synchrotron X-ray investigation. Environ Sci Technol 44(15):5920–5926

    Article  CAS  Google Scholar 

  • Tian SK, Lu LL, Zhang J, Wang K, Brown P, He ZL, Liang J, Yang XE (2011) Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere 84(1):63–69

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655

    Article  CAS  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46(12):1915–1923

    Article  CAS  Google Scholar 

  • Wang CR, Tian YA, Wang XR, Geng JJ, Jiang JL, Yu HX, Wang C (2010) Lead-contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots of Vicia faba seedlings. Ecotoxicology 19(6):1130–1139

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125(1):199–208

    Article  CAS  Google Scholar 

  • Yang X, Li TQ, Yang JC, He ZL, Lu LL, Meng FH (2006) Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta 224(1):185–195

    Article  CAS  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67(1):44–50

    Article  CAS  Google Scholar 

  • Zhang ZC, Gao X, Qiu BS (2008) Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry 69(4):911–918

    Article  CAS  Google Scholar 

  • Zhou WB, Qiu BS (2005) Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci 169(4):737–745

    Article  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101(1):1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (30871589), the National High Technology Research and Development Program of China (2009AA06Z316), and Shanghai Tongji Gao Tingyao Environmental Science & Technology Development Foundation (7th winner, 2010). Authors are also grateful to two anonymous referees who made valuable suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-e Yang or Tingxuan Li.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Gupta, D.K., Tian, S. et al. Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii . Environ Sci Pollut Res 19, 1640–1651 (2012). https://doi.org/10.1007/s11356-011-0675-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0675-1

Keywords

Navigation