Skip to main content
Log in

Adsorption of Remazol Red 198 onto magnetic N-lauryl chitosan particles: equilibrium, kinetics, reuse and factorial design

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Purpose

The discharge of colored effluents from industries is an important environmental issue and it is indispensable to remove the dyes before the water gets back to the rivers. The magnetic adsorbents present the advantage of being easily separated from the aqueous system after adsorption by positioning an external magnetic field.

Methods

Magnetic N-lauryl chitosan (L-Cht/γ-Fe2O3) particles were prepared and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, and vibrating sample magnetometry. Remazol Red 198 (RR198) was used as a reactive dye model for adsorption on L-Cht/γ-Fe2O3. The adsorption isotherms were performed at 25°C, 35°C, 45°C, and 55°C and the process was optimized using a 23 factorial design (analyzed factors: pH, ionic strength, and temperature). The desorption and regeneration studies were performed in a three times cycle.

Results

The characterization of the material indicated that the magnetic particles were introduced into the polymeric matrix. The pseudo-second order was the best model for explaining the kinetics and the Langmuir–Freundlich was the best-fitted isotherm model. At room temperature, the maximum adsorption capacity was 267 mg g−1. The material can be reused, but with a decrease in the amount of adsorbed dye.

Conclusions

L-Cht/γ-Fe2O3 is a promising material to remove RR198 and probably other similar reactive dyes from aqueous effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akar ST, Özcan AS, Akar T, Özcan A, Kaynak Z (2009a) Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste. Desalination 249:757–761

    Article  CAS  Google Scholar 

  • Akar T, Tosun I, Kaynak Z, Ozkara E, Yeni O, Sahin EN, Akar ST (2009b) An attractive agro-industrial by-product in environmental cleanup: dye biosorption potential of untreated olive pomace. J Hazard Mater 166:1217–1225

    Article  CAS  Google Scholar 

  • Alberghina G, Bianchini R, Fichera M, Fisichella S (2000) Dimerization of Cibacron Blue F3GA and other dyes: influence of salts and temperature. Dyes Pigments 46:129–137

    Article  CAS  Google Scholar 

  • Albornoz C, Sileo EE, Jacobo SE (2004) Magnetic polymers of maghemite (γ-Fe2O3) and polyvinyl alcohol. Physica B 354:149–153

    Article  CAS  Google Scholar 

  • Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2000) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments 77:16–23

    Article  Google Scholar 

  • Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49

    Article  CAS  Google Scholar 

  • Chatterjee S, Chatterjee S, Chatterjee BP, Das AR, Guha AK (2005) Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads. J Colloid Interf Sci 288:30–35

    Article  CAS  Google Scholar 

  • Cojocaru C, Zakrzewska-Trznadel G (2007) Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration. J Membrane Sci 298:56–70

    Article  CAS  Google Scholar 

  • Denkbas EB, Kiliçay E, Birlikseven C, Öztürk E (2002) Magnetic chitosan microspheres: preparation and characterization. React Funct Polym 50:225–232

    Article  CAS  Google Scholar 

  • Domínguez JR, González T, Palo P, Cuerda-Correa EM (2011) Removal of common pharmaceuticals present in surface Waters by Amberlite XAD-7 acrylic-ester-resin: influence of pH and presence of other drugs. Desalination 269:231–238

    Article  Google Scholar 

  • Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of the activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337

    Google Scholar 

  • Dusza A, Wojtyniak M, Nedelko N, Ślawska-Waniewska A, Greneche JM, Rodrigues CA, Burger C, Stringari C, Debrassi A (2010) Magnetic behavior of O-carboxy-methylchitosan bounded with iron oxide particles. IEEE Trans Magn 46:459–462

    Article  CAS  Google Scholar 

  • Elovich SY, Larinov OG (1962) Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions. Izv Akad Nauk SSSR, Otd Khim Nauk 2:209–216

    Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Hu Y, Bo Y, YaoBo L, RongShi C (2009) Preparation of magnetic chitosan microspheres and its applications in wastewater treatment. Sci China Ser B-Chem 52:249–256

    Article  Google Scholar 

  • Huang XY, Bin JP, Bu HT, Jiang GB, Zeng MH (2011) Removal of anionic dye eosin Y from aqueous solution using ethylenediamine modified chitosan. Carbohyd Polym 84:1350–1356

    Article  CAS  Google Scholar 

  • Ip AWM, Barford JP, McKay G (2009) Reactive black dye adsorption/desorption onto different adsorbents: effect of salt, surface chemistry, pore size and surface area. J Colloid Interf Sci 337:32–38

    Article  CAS  Google Scholar 

  • Iram M, Guo C, Guan Y, Ishfaq A, Liu H (2010) Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J Hazard Mater 181:1039–1050

    Article  CAS  Google Scholar 

  • Janus M, Kusiak E, Morawski AW (2009) Carbon modified TiO2 photocatalyst with enhanced adsorptivity for dyes from water. Catal Lett 131:506–511

    Article  CAS  Google Scholar 

  • Jindarom C, Meeyoo V, Kitiyanan B, Rirksomboon T, Rangsunvigit P (2007) Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Chem Eng J 133:239–246

    Article  CAS  Google Scholar 

  • Krishnapriya KR, Kandaswamy M (2010) A new chitosan biopolymer derivative as metal-complexing agent: synthesis, characterization, and metal(II) ion adsorption studies. Carbohyd Res 345:2013–2022

    Article  CAS  Google Scholar 

  • Kyzas GZ, Kostoglou M, Vassiliou AA, Lazaridis NK (2011) Treatment of real effluents from dyeing reactor: experimental and modeling approach by adsorption onto chitosan. Chem Eng J 168:577–585

    Article  CAS  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  • Largura MCT, Debrassi A, Santos HH, Marques AT, Rodrigues CA (2010) Adsorption of Rhodamine B onto O-carboxymethylchitosan-N-lauryl. Separ Sci Technol 45:1490–1498

    Article  CAS  Google Scholar 

  • Li S (2010) Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylose. Bioresour Technol 101:2197–2202

    Article  CAS  Google Scholar 

  • Li JM, Meng XG, Hu CW, Du J (2009) Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresour Technol 100:1168–1173

    Article  CAS  Google Scholar 

  • Li Q, Yue QY, Sun HJ, Su Y, Gao BY (2010) A comparative study on the properties, mechanisms and process designs for the adsorption of non-ionic or anionic dyes onto cationic-polymer/bentonite. J Environ Manage 91:1601–1611

    Article  CAS  Google Scholar 

  • Liu Y, Liu YJ (2008) Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol 61:229–242

    Article  CAS  Google Scholar 

  • Ma W, Ya FQ, Han M, Wang R (2007) Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle. J Hazard Mater 143:296–302

    Article  CAS  Google Scholar 

  • Mahmoodi NM, Hayati B, Arami M, Lan C (2011) Adsorption of textile dyes on Pine cone from colored wastewater: kinetic, equilibrium and thermodynamic studies. Desalination 268:117–125

    Article  CAS  Google Scholar 

  • Mladenova EK, Dakova IG, Karadjova IB (2011) Chitosan membranes as sorbents for trace elements determination in surface waters. Environ Sci Pollut Res. doi:10.1007/s11356-011-0529-x

  • Moeser GD, Roach KA, Green WH, Hatton TA, Laibinis PE (2004) High-gradient magnetic separation of coated magnetic nanoparticles. AICHE J 50:2835–2848

    Article  CAS  Google Scholar 

  • Moussavi G, Mahmoudi M (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO particles. J Hazard Mater 168:806–812

    Article  CAS  Google Scholar 

  • Ngah WSW, Teong LC, Hanafiah MAKM (2011a) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohyd Polym 83:1446–1456

    Article  Google Scholar 

  • Ngah WSW, Fatinathan S, Yosop NA (2011b) Isotherm and kinetic studies on the adsorption of humic acid onto chitosan-H2SO4 beads. Desalination 272:293–300

    Article  CAS  Google Scholar 

  • Schwertmann U, Cornell RM (2000) The iron oxides: structure, properties, reactions, occurrence and uses. Wiley, Weinheim

    Google Scholar 

  • Shariati S, Faraji M, Yamini Y, Rajabi AA (2011) Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination 270:160–165

    Article  CAS  Google Scholar 

  • Shipley HJ, Yean S, Kan AT, Tomson MB (2010) A sorption kinetics model for arsenic adsorption to magnetite nanoparticles. Environ Sci Pollut Res 17:1053–1062

    Article  CAS  Google Scholar 

  • Singh KP, Gupta S, Singh AK, Sinha S (2010) Experimental design and response surface modeling for optimization of Rhodamine B removal from water by magnetic nanocomposite. Chem Eng J 165:151–160

    Article  CAS  Google Scholar 

  • Stenger F, Cechinel-Filho V, Meyre-Silva C, Bresolin TMB, Rodrigues CA (2009) Synthesis of laurylchitosan and its use in the separation of flavonoids from Aleurites moluccana by matrix solid-phase dispersion. Chromatographia 69:183–187

    Article  Google Scholar 

  • Sun GZ, Chen XG, Li YY, Zheng B, Gong ZH, Sun JJ, Chen H, Li J, Lin WX (2008a) Preparation of H-oleoyl-carboxymethyl-chitosan and the function as a coagulation agent for residual oil in aqueous system. Front Mater Sci China 2:105–112

    Article  Google Scholar 

  • Sun GZ, Chen XG, Li YY, Liu CS, Liu CG, Zheng B, Gong ZH, Sun JJ, Chen H, Li J, Lin WX (2008b) Preparation and properties of amphiphilic chitosan derivative as a coagulation agent. Environ Eng Sci 25:1325–1332

    Article  CAS  Google Scholar 

  • Szygula A, Guibal E, Palacín MA, Ruiz M, Sastre AM (2009) Removal of an anionic dye (Acid Blue 92) by coagulation–flocculation using chitosan. J Environ Manage 90:2979–2986

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–60

    Google Scholar 

  • Wu FC, Tseng RL, Juang RS (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye–chitosan systems. Chem Eng J 150:366–373

    Article  CAS  Google Scholar 

  • Ying L, Cunku D, Chu J, Qi J, Li X (2011) Surface molecular impriting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization: a facile three-in-one system for recognition and separation of endocrine disrupting chemicals. Nanoscale 3:280–287

    Article  Google Scholar 

  • Zhang X, Niu H, Pan Y, Shi Y, Cai Y (2010) Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples. Anal Chem 82:2363–2371

    Article  CAS  Google Scholar 

  • Zhou L, Jin J, Liu Z, Liang X, Shang C (2011) Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J Hazard Mater 185:1045–1052

    Article  CAS  Google Scholar 

  • Zhu HY, Jiang R, Xiao L, Li W (2010) A novel magnetically separable γ-Fe2O3/crosslinked chitosan adsorbent: preparation, characterization and adsorption application for removal of hazardous azo dye. J Hazard Mater 179:251–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Pró-Reitoria de Pesquisa, Pós-graduação, Extensão e Cultura da Universidade do Vale do Itajaí (ProPPEC/UNIVALI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clóvis Antonio Rodrigues.

Additional information

Responsible editor: Hailong Wang

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOC 834 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debrassi, A., Baccarin, T., Demarchi, C.A. et al. Adsorption of Remazol Red 198 onto magnetic N-lauryl chitosan particles: equilibrium, kinetics, reuse and factorial design. Environ Sci Pollut Res 19, 1594–1604 (2012). https://doi.org/10.1007/s11356-011-0662-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0662-6

Keywords

Navigation