Skip to main content

Advertisement

Log in

Effect of oxic/anoxic switches on bacterial communities and PAH biodegradation in an oil-contaminated sludge

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Purpose

We studied the effect of alternations of aeration on both the autochthonous bacterial communities from an oily sludge to the endogenous polycyclic aromatic hydrocarbons (PAH) biodegradation compared to a permanent oxic condition.

Methods

Genomic and transcriptional analyses associated with chemical measurements were used to assess the dynamics of bacteria coupled to PAH removal during an incubation of 26 days.

Results and conclusions

The autochthonous bacterial communities of an oil sludge showed a strong potential to adapt and degrade PAH when they were subjected to alternating anoxic/oxic conditions, as well as under an oxic condition. In addition, changes in the bacterial communities were related to the different phases of hydrocarbon degradation, and the removal efficiency of PAH was similar in both switching and permanent oxic conditions. This methodology could be useful for an alternative solution of oil sludge treatment with a low-cost processing, as its efficiency is similar to that of a permanent oxic incubation which is more expensive in oxygen supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abril G, Commarieu MV, Etcheber H, Deborde J, Deflandre B, Zivadinovic MK, Chaillou G, Anschutz P (2010) In vitro simulation of oxic/suboxic diagenesis in an estuarine fluid mud subjected to redox oscillations. Estuar Coast Shelf Sci 88:279–291

    Article  CAS  Google Scholar 

  • Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation: controls on carbon preservation. Chem Geol 114(3–4):331–345

    Article  CAS  Google Scholar 

  • Altshul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  Google Scholar 

  • Baboshin M, Akimov V, Baskunov B, Born TL, Khan SU, Golovleva L (2008) Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434. Biodegradation 19:567–576

    Article  CAS  Google Scholar 

  • Bastviken D, Persson L, Odham G, Tranvik L (2004) Degradation of dissolved organic matter in oxic and anoxic lake water. Limnol Oceanogr 49(1):109–116

    Article  CAS  Google Scholar 

  • Beckles DM, Ward CH, Hughes JB (1998) Effect of mixtures of polycylic aromatic hydrocarbons and sediments on fluoranthene biodegradation patterns. Environ Toxicol Chem 17(7):1246–1251

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Boopathy R (2004) Anaerobic biodegradation of no. 2 diesel fuel in soil: a soil column study. Bioresour Technol 94:143–151

    Article  CAS  Google Scholar 

  • Bressan M, Mougel C, Dequiedt S, Maron PA, Lemanceau P, Ranjard L (2008) Response of soil bacterial community structure to successive perturbations of different types and intensities. Environ Microbiol 10(8):2184–2187

    Article  Google Scholar 

  • Cappello S, Caruso G, Zampino D, Monticelli LS, Maimone G, Denaro R, Tripodo B, Trousselier M, Yakimov M, Giuliano L (2006) Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study. J Appl Microbiol 102:184–194

    Article  Google Scholar 

  • Chaîneau CH, Rougeux G, Yéprémian C, Oudot J (2005) Effects of nutrient concentration on the biodegradation of a crude oil and associated microbial populations in the soil. Soil Biol Biochem 37:1490–1497

    Article  Google Scholar 

  • Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  CAS  Google Scholar 

  • Doyle E, Muckian L, Mickey AM, Clipson N (2008) Microbial PAH degradation. Adv Appl Microbiol 65:27–66

    Article  CAS  Google Scholar 

  • Eriksson M, Dalhammar G, Borg-Karlson AK (1999) Aerobic degradation of a hydrocarbon mixture in natural uncontaminated potting soil by indigenous microorganisms at 20°C and 6°C. Appl Microbiol Biotechnol 51:532–535

    Article  CAS  Google Scholar 

  • Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15:93–120

    Article  CAS  Google Scholar 

  • Folsom BR, Schieche DR, DiGrazia PM, Werner J, Palmer S (1999) Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl Environ Microbiol 65(11):4967–4972

    CAS  Google Scholar 

  • Gafarov AB, Panov AV, Filonov AE, Boronin AM (2006) Change in the composition of a bacterial association degrading aromatic compounds during oil sludge detoxification in a continuous-flow microbial reactor. Appl Biochem Microbiol 42(2):160–165

    Article  CAS  Google Scholar 

  • Gentile G, Giuliano L, D'Auria G, Smedile F, Azzaro M, De Domenico M, Yakimov MM (2006) Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing. Environ Microbiol 8(12):2150–2161

    Article  CAS  Google Scholar 

  • Greene EA, Kay JG, Jaber K, Stehmeier LG, Voordouw G (2000) Composition of soil microbial communities enriched on a mixture of aromatic compounds. Appl Environ Microbiol 66(12):5282–5289

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  Google Scholar 

  • Heider J, Spormann AM, Beller HR, Widdel F (1999) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473

    Article  Google Scholar 

  • Hulthe G, Hulth S, Hall POJ (1998) Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim Cosmochim Acta 62:1319–1328

    Article  CAS  Google Scholar 

  • Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiol Ecol 32:129–141

    Article  CAS  Google Scholar 

  • Juteau P, Bisaillon JG, Lépine F, Ratheau V, Beaudet R, Villemur R (2003) Improving the biotreatment of hydrocarbons-contaminated soils by addition of activated sludge taken from the wastewater treatment facilities of an oil refinery. Biodegradation 14:31–40

    Article  CAS  Google Scholar 

  • Kaplan CW, Kitts CL (2004) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70(3):1777–1786

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Konopka A, Carrero-Colon M, Nakatsu CH (2007) Community dynamics and heterogeneities in mixed bacterial communities subjected to nutrient periodicities. Environ Microbiol 9(6):1584–1590

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  Google Scholar 

  • Löser C, Seidel H, Zehnsdorf A, Stottmeister U (1998) Microbial degradation of hydrocarbons in soil during aerobic/anaerobic changes and under purely aerobic conditions. Appl Microbiol Biotechnol 49:631–636

    Article  Google Scholar 

  • Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44

    Article  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64(2):795–799

    CAS  Google Scholar 

  • McNaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang YJ, White DC (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65(8):3566–3574

    Google Scholar 

  • Mills DK, Fitzgerald K, Litchfield CD, Gillevet PM (2003) A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. J Microbiol Meth 54:57–74

    Article  CAS  Google Scholar 

  • Mills HJ, Martinez RJ, Story S, Sobecky PA (2005) Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol 71(6):3235–3247

    Article  CAS  Google Scholar 

  • Moeseneder MM, Arrieta JM, Herndl GJ (2005) A comparison of DNA- and RNA-based clone libraries from the same marine bacterioplankton community. FEMS Microbiol Ecol 51:341–352

    Google Scholar 

  • Nogales B, Moore ERB, Llobet-Brossa E, Rosselo-Mora R, Amann R, Timmis KN (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67(4):1874–1884

    Google Scholar 

  • Noll M, Matthies D, Frenzel P, Derakshani M, Liesak W (2005) Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ Microbiol 7(3):382–395

    Article  CAS  Google Scholar 

  • Overmann J, Fischer U, Pfennig N (1992) A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. Arch Microbiol 157:329–335

    Article  CAS  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  Google Scholar 

  • Pfennig N, Trüper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes. Springer, New-York, pp 3200–3221

    Google Scholar 

  • Popp N, Schlömann M, Mau M (2006) Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology 152:3291–3304

    Article  CAS  Google Scholar 

  • Prince RC, Elmendorf DL, Lute JR, Hsu CS, Haith CE, Senius JD, Dechert GJ, Douglas GS, Butler EL (1994) 17α (H), 21β (H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ Sci Technol 28:142–145

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6:278–309

    Article  CAS  Google Scholar 

  • Shokrollahzadeh S, Azizmohseni F, Golmohammad F, Shokouhi H, Khademhaghighat F (2008) Biodegradation potential and bacterial diversity of petrochemical wastewater treatment plant in Iran. Bioresour Technol 99:6127–6133

    Article  CAS  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparison of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  CAS  Google Scholar 

  • Singleton DR, Powell SN, Sangaiah R, Gold A, Ball LM, Aitken MD (2005) Stable-isotope probing of bacteria capable of degrading salicylate, naphtalene, or phenanthrene in a bioreactor treating contaminated soil. Appl Environ Microbiol 71(3):1202–1209

    Article  CAS  Google Scholar 

  • Singleton DR, Sangaiah R, Gold A, Ball LM, Aitken MD (2006) Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ Microbiol 8(10):1736–1745

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Vieira PA, Vieira RB, Faria S, Ribeiro EJ, Cardoso VL (2009) Biodegradation of diesel oil and gasoline contaminated effluent employing intermittent aeration. J Hazard Mater 168:1366–1372

    Article  CAS  Google Scholar 

  • Viñas M, Sabaté J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71(11):7008–7018

    Article  Google Scholar 

  • Wang Z, Stout SA (2007) Oil spill environmental forensics. Fingerprinting and source identification. Academic, London, p 554

    Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New-York, pp 3200–3221

    Google Scholar 

  • Young CC, Lin SY, Arun AB, Shen FT, Chen WM, Rekha PD, Langer S, Busse HJ, Wu YH, Kämpfer P (2009) Algoriphagus olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol. doi:0.1099/ijs.0.009415-0, In press

    Google Scholar 

  • Zucchi M, Angiolini L, Borin S, Brusetti L, Dietrich N, Gigliotti C, Barbieri P, Sorlini C, Daffonchio C (2003) Response of bacterial community during bioremediation of an oil-polluted soil. J Appl Microbiol 94:248–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an EC2CO (Diverdhy project) grant from the Centre National de la Recherche Scientifique (CNRS) and from the Institut des Sciences de l′Univers (INSU), and a grant from the ANR (Dhyva project). IV was supported by a doctoral grant from the Communauté d′Agglomération de Pau Pyrénées. We thank Jonathan Lebastard for technical assistance and the Laboratoire de Biotechnologie de l′Environnement (INRA, Narbonne) for providing the reactor equipment. We are grateful to Dr. Anne Fahy for careful editing of the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Cravo-Laureau.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitte, I., Duran, R., Jézéquel, R. et al. Effect of oxic/anoxic switches on bacterial communities and PAH biodegradation in an oil-contaminated sludge. Environ Sci Pollut Res 18, 1022–1032 (2011). https://doi.org/10.1007/s11356-010-0435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-010-0435-7

Keywords

Navigation