Skip to main content
Log in

Measurement of the Viscoelastic Properties of Bitumen Using Instrumented Spherical Indentation

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Indentation testing as a tool for determination of the viscoelastic mechanical properties of bitumen is examined in some detail using theoretical, numerical as well as experimental methods. In particular Brinell indentation is analysed and simple but rigorous formulae for a complete characterization of linear viscoelastic materials are presented. Numerical methods (finite element methods) are used in order to verify and substantiate these relations for an experimental situation. Indentation experiments are then performed on bitumen and special efforts are made in order to avoid size effects, i. e. anomalous results due to the fact that the indented specimens are too small and as a result, far field boundary conditions will influence the interpretation of the experimental output. The mechanical properties determined experimentally by indentation are compared with corresponding results from standard mechanical tests, and the results are encouraging considering the fact that non-linear effects are also influencing the outcome of the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Isacsson U, Lu X (1995) Testing and appraisal of polymer modified road bitumens—state of the Art. Mater Struct 28:139–159

    Article  Google Scholar 

  2. Anderson DA, Kennedy TW (1993) Development of SHRP binder specification. J Assoc Asphalt Paving Technol 62:481

    Google Scholar 

  3. Anderson DA, Christensen DW, Bahia HU, Dongre R, Sharma MG, Antle CE, Button J (1994) Binder characterization and evaluation, vol 3. National Research Council, Washington D. C

    Google Scholar 

  4. Zofka A, Nener-Plante D (2011) Determination of asphalt binder creep compliance using depth-sensing indentation. Exp Mech 51:1365–1377

    Article  Google Scholar 

  5. Marchildon RP, Hesp SA (2011) Development of microindentation tests for the specification grading of asphalt cements. Int J Pavem Res Tech 4:222–230

    Google Scholar 

  6. Ossa EA, Deshpande VS, Cebon D (2005) Spherical indentation behaviour of bitumen. Acta Mater 53:3103–3113

    Article  Google Scholar 

  7. Bower AF, Fleck NA, Needleman A, Ogbonna N (1993) Indentation of a power law creeping solid. Proc R Soc Lond A 441:97–124

    Article  MATH  Google Scholar 

  8. Gouldstone A, Chollacoop N, Dao M, Li J, Minor A, Shen Y-L (2007) Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater 55:4015–4039

    Article  Google Scholar 

  9. Vanlandingham MR, Chang N-K, Drzal PL, White CC, Chang S-H (2005) Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing. J Polym Sci: Part B: Polym Phys 43:1794–1811

    Article  Google Scholar 

  10. Herbert EG, Oliver WC, Lumsdaine A, Pharr GM (2009) Measuring the constitutive behavior of viscoelastic solids in time and frequency domain using flat punch indentation. J Mater Res 24:626–637

    Article  Google Scholar 

  11. Sakaue K, Isawa T, Ogawa T, Yoshimoto T (2012) Evaluation of viscoelastic characteristics of short-fiber reinforced composite by indentation method. Exp Mech 52:1003–1008

    Article  Google Scholar 

  12. Oliver WC, Pharr GM (2003) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20

    Article  Google Scholar 

  13. Giannakopoulos AE, Larsson P-L, Vestergaard R (1994) Analysis of Vickers indentation. Int J Solids Struct 31:2679–2708

    Article  MATH  Google Scholar 

  14. Larsson P-L, Söderlund E, Giannakopoulos AE, Rowcliffe DJ, Vestergaard R (1996) Analysis of Berkovich indentation. Int J Solids Struct 33:221–248

    Article  MATH  Google Scholar 

  15. Tabor D (1951) Hardness of metals. Cambridge University Press, Cambridge

    Google Scholar 

  16. Hill R, Storåkers B, Zdunek A (1989) A theoretical study of the brinell hardness test. Proc Royal Soc Lond A423:301–330

    Article  Google Scholar 

  17. Biwa S, Storåkers B (1995) An analysis of fully plastic brinell indentation. J Mech Phys Solids 43:1303–1333

    Article  MathSciNet  MATH  Google Scholar 

  18. Storåkers B, Larsson P-L (1994) On Brinell and Boussinesq indentation of creeping solids. J Mech Phys Solids 42:307–332

    Article  MATH  Google Scholar 

  19. Storåkers B, Biwa S, Larsson P-L (1997) Similarity analysis of inelastic contact. Int J Solids Struct 34:3061–3083

    Article  MATH  Google Scholar 

  20. Carlsson S, Biwa S, Larsson P-L (2007) On frictional effects at inelastic contact between spherical bodies. Int J Mech Sci 42:107–128

    Article  Google Scholar 

  21. Lee EH, Radok JRM (1960) The contact problem for viscoelastic bodies. J Appl Mech 27:438–444

    Article  MathSciNet  MATH  Google Scholar 

  22. Hertz H (1882) Uber die beruhrung fester elastischer körper. J Reine Angewandte Mathematik 92:156–171

    MATH  Google Scholar 

  23. Graham GAC (1965) The contact problem in the linear theory of viscoelasticity. Int J Eng Sci 3:27–46

    Article  MATH  Google Scholar 

  24. Ting TCT (1966) The contact stresses between a rigid indenter and a viscoelastic half-space. J Appl Mech 33:845–854

    Article  MATH  Google Scholar 

  25. Ting TCT (1968) Contact problems in the linear theory of viscoelasticity. J Appl Mech 35:248–254

    Article  MATH  Google Scholar 

  26. Graham GAC (1967) The contact problem in the linear theory of viscoelasticity when the time-dependent contact area has any number of maxima and minima. Int J Eng Sci 5:495–514

    Article  MATH  Google Scholar 

  27. Hunter SC (1960) The hertz problem for a rigid spherical indenter and a viscoelastic half-space. J Mech Phys Solids 8:219–234

    Article  MathSciNet  MATH  Google Scholar 

  28. Calvit HH (1967) Numerical solution of the problem of impact of a rigid sphere onto a linear viscoelastic half-space and comparison with experiment. Int J Solids Struct 3:951–966

    Article  Google Scholar 

  29. Argon AS, Hori Y, Orowan E (1960) Indentation strength of glass. J Am Ceram Soc 43:86–100

    Article  Google Scholar 

  30. Graham GAC (1980) Viscoelastic contact problems with friction. Int J Eng Sci 18:191–196

    Article  MATH  Google Scholar 

  31. Carlsson S, Larsson P-L (1998) On microindentation of viscoelastic polymers. Polym Test 17:49–75

    Article  Google Scholar 

  32. Spence DA (1975) The hertz contact problem with finite friction. J Elast 5:297–319

    Article  MATH  Google Scholar 

  33. Storåkers B, Elaguine D (2005) Hertz contact at finite friction and arbitrary profiles. J Mech Phys Solids 53:1422–1447

    Article  MathSciNet  MATH  Google Scholar 

  34. Jelagin D, Larsson P-L (2008) Hertzian fracture at finite friction: a parametric study. Wear 265:840–848

    Article  Google Scholar 

  35. Andersson M, Nilsson F (1995) A perturbation method used for static contact and low velocity impact. Int J Impact Eng 16:759–775

    Article  Google Scholar 

  36. Jelagin D, Larsson P-L (2008) On indentation and initiation of fracture in glass. Int J Solids Struct 45:2993–3008

    Article  MATH  Google Scholar 

  37. Lu X (2012) Nynas AB, private communication

  38. Lu X, Langton M, Olofsson P, Redelius P (2005) Wax morphology in bitumen. J Mater Sci 40:1893–1900

    Article  Google Scholar 

  39. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  40. Little DN, Bhasin A (2006) Using surface energy measurements to select materials for asphalt pavement. NCHRP Web-only Doc 104

  41. Bouvard D, Ouedraogo E (1986) A simulation material for modeling the Hot-forming of metal powders. Powder Technol 46:255–262

    Article  Google Scholar 

  42. Larsson PL, Biwa S, Storåkers B (1996) Analysis of cold and Hot isostatic compaction of spherical particles. Acta Mater 44:3655–3666

    Article  Google Scholar 

Download references

Acknowledgments

The writers are indebted to Mr. M. Öberg for very able experimental assistance. Authors would also like to thank Dr. X. Lu and Mr. P. Uhlback, Nynas AB, for providing the material and performing the DSR testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jelagin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelagin, D., Larsson, PL. Measurement of the Viscoelastic Properties of Bitumen Using Instrumented Spherical Indentation. Exp Mech 53, 1233–1244 (2013). https://doi.org/10.1007/s11340-013-9725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9725-6

Keywords

Navigation