Skip to main content
Log in

Multi-Scale Experiments and Interfacial Mechanical Modeling of Carbon Nanotube Fiber

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The multi-scale deformation and interfacial mechanical behavior of carbon nanotube fibers with multi-level structures are investigated by experimental and theoretical methods. Multi-scale experiments including uniaxial tensile testing, in situ Raman spectroscopy, and scanning electron microscopy are conducted to measure the mechanical response of multi-level structures within the fiber under tension. A two-level interfacial mechanical model is then presented to analyze the interfacial bonding strength of mesoscopic bundles and microscopic nanotubes. The evolution characteristics of multi-scale deformation of the fiber are described based on experimental characterization and interfacial strength analysis. The strengthening mechanism of the fiber is further studied. Comprehensive analysis shows that the property of multi-level interfaces is a critical factor for the fiber strength and toughness. Finally, the method of improving the mechanical properties of fiber-based materials is discussed. The result can be used to guide multi-level interface engineering of carbon nanotube fibers and fiber-based composites to produce high performance materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A (2007) High-performance carbon nanotube fiber. Science 318:1892–1895. doi:10.1126/science.1147635

    Article  Google Scholar 

  2. Zhong XH, Li YL, Liu YK, Qiao XH, Feng Y, Liang J, Jin J, Zhu L, Hou F, Li JY (2010) Continuous multilayered carbon nanotube yarns. Adv Mater 22:692–696. doi:10.1002/adma.200902943

    Article  Google Scholar 

  3. Jia JJ, Zhao JN, Xu G, Di JT, Yong ZZ, Tao YY, Fang C, Zhang ZG, Zhang XH, Zheng LX, Li QW (2011) A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon 49:1333–1339. doi:10.1016/j.carbon.2010.11.054

    Article  Google Scholar 

  4. Motta M, Moisala A, Kinloch IA, Windle AH (2007) High performance fibres from ‘dog bone’ carbon nanotubes. Adv Mater 19:3721–3726. doi:10.1002/adma.200700516

    Article  Google Scholar 

  5. Boncel S, Sundaram RM, Windle AH, Koziol KKK (2011) Enhancement of the mechanical properties of directly spun CNT fibres by chemical treatment. ACS Nano 5(12):9339–9344. doi:10.1021/nn202685x

    Article  Google Scholar 

  6. Cheng TW, Hsu WK (2007) Winding of single-walled carbon nanotube ropes: an effective load transfer. Appl Phys Lett 90(12):123102. doi:10.1063/1.2714282

    Article  Google Scholar 

  7. Rong Q, Wang J, Kang Y, Li Y, Qin Q (2012) A damage mechanics model for twisted CNT fiber. Acta Mech Solida Sinica 25(4):342–347

    Article  Google Scholar 

  8. Liu K, Sun YH, Zhou RF, Zhu HY, Wang JP, Liu L, Fan SH, Jiang KL (2010) Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 21:045708. doi:10.1088/0957-4484/21/4/045708

    Article  Google Scholar 

  9. Zhou LJ, Kang YL, Guo JG (2011) Phenomenological model of interfacial stress transfer in carbon nanotube reinforced composites with van der Waals effects. Polym Compos 32(7):1069–1076. doi:10.1002/pc.21124

    Article  Google Scholar 

  10. Li C, Liu Y, Yao X, Ito M, Noguchi T, Zheng Q (2010) Interfacial shear strengths between carbon nanotubes. Nanotechnology 21(11):115704. doi:10.1088/0957-4484/21/11/115704

    Article  Google Scholar 

  11. Qian D, Liu WK, Ruoff RS (2003) Load transfer mechanism in carbon nanotube ropes. Compos Sci Technol 63(11):1561–1569. doi:10.1016/s0266-3538(03)00064-2

    Article  Google Scholar 

  12. Zhang X, Li Q (2009) Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers. ACS Nano 4(1):312–316. doi:10.1021/nn901515j

    Article  Google Scholar 

  13. Ma W, Liu L, Yang R, Zhang T, Zhang Z, Song L, Ren Y, Shen J, Niu Z, Zhou W, Xie S (2009) Monitoring micromechanical process in macroscale carbon nanotube films and fibers. Adv Mater 21(5):603–608. doi:10.1002/adma.200801335

    Article  Google Scholar 

  14. Vilatela JJ, Deng L, Kinloch IA, Young RJ, Windle AH (2011) Structure of and stress transfer in fibres spun from carbon nanotubes produced by chemical vapour deposition. Carbon 49(13):4149–4158. doi:10.1016/j.carbon.2011.05.045

    Article  Google Scholar 

  15. Li Q, Kang YL, Qiu W, Li YL, Huang GY, Guo JG, Deng WL, Zhong XH (2011) Deformation mechanisms of carbon nanotube fibres under tensile loading by in-situ Raman spectroscopy analysis. Nanotechnology 22(22):225704. doi:10.1088/0957-4484/22/22/225704

    Article  Google Scholar 

  16. Elliott J, Sandler J, Windle A, Young R, Shaffer M (2004) Collapse of single-wall carbon nanotubes is diameter dependent. Phys Rev Lett 92(9):095501. doi:10.1103/PhysRevLett.92.095501

    Article  Google Scholar 

  17. Kang YL, Qiu Y, Lei ZK, Hu M (2005) An application of Raman spectroscopy on the measurement of residual stress in porous silicon. Opt Lasers Eng 43(8):847–855. doi:10.1016/j.optlaseng.2004.09.005

    Article  Google Scholar 

  18. Qiu W, Kang YL, Lei ZK, Qin QH, Li Q, Wang Q (2010) Experimental study of the Raman strain rosette based on the carbon nanotube strain sensor. J Raman Spectrosc 41(10):1216–1220. doi:10.1002/jrs.2584

    Article  Google Scholar 

  19. Kao CC, Young RJ (2004) A Raman spectroscopic investigation of heating effects and the deformation behaviour of epoxy/SWNT composites. Compos Sci Technol 64(15 SPEC. ISS):2291–2295. doi:10.1016/j.compscitech.2004.01.019

    Article  Google Scholar 

  20. Starman L, Coutu R (2012) Stress monitoring of post-processed MEMS silicon microbridge structures using Raman spectroscopy. Exp Mech. doi:10.1007/s11340-011-9586-9

  21. Srikar V, Spearing S (2003) A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems. Exp Mech 43(3):238–247. doi:10.1007/bf02410522

    Article  Google Scholar 

  22. Arjyal B, Katerelos D, Filiou C, Galiotis C (2000) Measurement and modeling of stress concentration around a circular notch. Exp Mech 40(3):248–255. doi:10.1007/bf02327496

    Article  Google Scholar 

  23. Kumar R, Cronin SB (2007) Raman scattering of carbon nanotube bundles under axial strain and strain-induced debundling. Phys Rev B 75:155421. doi:10.1103/PhysRevB.75.155421

    Article  Google Scholar 

  24. Cronin SB, Swan AK, Ünlü MS, Goldberg BB, Dresselhaus MS, Tinkham M (2005) Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys Rev B 72:035425. doi:10.1103/PhysRevB.72.035425

    Article  Google Scholar 

  25. Dresselhaus MS, Jorio A, Souza Filho AG, Saito R (2010) Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Phil Trans R Soc A Math Phys Eng Sci 368(1932):5355–5377. doi:10.1098/rsta.2010.0213

    Article  Google Scholar 

  26. Nikolaev P, Menamparambath MM, Boul PJ, Moloney P, Arepalli S (2011) Raman probing of adhesion loss in carbon nanotube – reinforced composite. Compos Part A 42:1681–1686. doi:10.1016/j.compositesa.2011.07.022

    Article  Google Scholar 

  27. Parsegian VA (2006) Van der Waals forces: a handbook for biologists, chemists, engineers, and physicists. Cambridge University Press, New York

    Google Scholar 

  28. Cai J, Wang CY, Yu T, Yu S (2009) Wall thickness of single-walled carbon nanotubes and its Young’s modulus. Phys Scr 79(2):025702. doi:10.1088/0031-8949/79/02/025702

    Article  Google Scholar 

  29. Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(10):2487–2499. doi:10.1016/s0020-7683(03)00056-8

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of this work provided by the National Basic Research Program of China (No. 2012CB937500), the National Natural Science Foundation of China (No. 11002097), and the Key Grant of Chinese Ministry of Education (No.309010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-L. Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, WL., Qiu, W., Li, Q. et al. Multi-Scale Experiments and Interfacial Mechanical Modeling of Carbon Nanotube Fiber. Exp Mech 54, 3–10 (2014). https://doi.org/10.1007/s11340-012-9706-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-012-9706-1

Keywords

Navigation