Skip to main content
Log in

Study on Deformation of Polycrystalline Aluminum Alloy Using Moiré Interferometry

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Polycrystalline aluminum alloy is manufactured by annealing, compared to the width of the specimen, the size of the grains can not be omitted, which makes the specimen anisotropic. Under uniaxial tension, the deformation field is inhomogeneous. In this study, moiré interferometry is successfully applied to measure the deformation of the polycrystalline specimen. The experimental results presented the stress versus strain responses of the marked grains in different orientations and different shapes. By using fringe centering method, the strain distributions under certain load in the centers and on the boundaries of the grains are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asaro RJ (1983) Micromechanics of crystals and polycrystals. Adv Appl Mech 23:1.

    Article  Google Scholar 

  2. Bassini JL (1994) Plastic flow of crystals. Adv Appl Mech 30:192–258.

    Google Scholar 

  3. Dawson PR (2000) Computational crystal plasticity. Int J Solids Struct 37(1):115–130.

    Article  MATH  Google Scholar 

  4. Schacht T, Untermann N, Steck E (2003) The influence of crystallographic orientation on the deformation behaviour of single crystals containing microvoids. Int J Plast 19(10):1605–1626.

    Article  MATH  Google Scholar 

  5. Kaczmarek J (2003) A nanoscale model of crystal plasticity. Int J Plast 19(10):1585–1603.

    Article  MATH  Google Scholar 

  6. Weiland H, Becker R (1999) Mesoscale deformation structures in aluminum. In: Bilde-Sorensen JB, et al. (eds) Proc. of 20th Ris Int. Symposium on Mat. Sci.: Deformation-induced microstructures: Analysis and relation to properties Ris National Laboratory, Roskilde, Demark, pp 213–225.

    Google Scholar 

  7. Evers LP, Parks DM, Brekelmans WAM, Geers MGD (2001) Enhanced modeling of hardening in crystal plasticity for FCC metals. J Phys IV: JP 11(5):Pr5179–Pr5186.

    Google Scholar 

  8. Skalli A, Fortunier R, Fillit R, Driver JH (1985) Crystal rotations during the rolling of large-grained aluminum sheet. Acta Metall 33(6):997–1007.

    Article  Google Scholar 

  9. Raabe D, Sachtleber M, Zhao Z, Roters F, Zaefferer S (2001) Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater 49(17):3433–3441.

    Article  Google Scholar 

  10. Yao Z, Wagoner RH (1993) Active slip in aluminum multicrystals. Acta Metall Mater 41(2):451–468.

    Article  Google Scholar 

  11. Delaire F, Raphanel JL, Rey C (2000) Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: Experimental study and finite element simulations. Acta Mater 48(5):1075–1087.

    Article  Google Scholar 

  12. Zhang N, Tong W (2004) An experimental study on grain deformation and interactions in an Al-0.5% Mg multicrystal. Int J Plast 20(3):523–542.

    Article  MathSciNet  Google Scholar 

  13. Wang Z, Cardenas-Garcia JF, Han B (2005, February) Inverse method to determine elastic constants using a circular disk and moiré interferometry. Exp Mech 45(1):27–34.

    Google Scholar 

  14. Post D, Han B, Ifju P (1994) High sensitivity moiré: Experimental analysis for mechanics and materials. Springer, Berlin Heidelberg New York.

    Google Scholar 

  15. Post D, Han B, Ifju P (2000) Moiré methods for engineering and science–moiré interferometry and shadow moiré. In: Rastogi P (ed) Photomechanics for engineers, chapter 7. Springer, Berlin Heidelberg New York.

    Google Scholar 

  16. Weimin M, Xinbing Z (1994) Recrystallize and crystal grain growth of metal. Metallurgical Industrial Publishing Company, Beijing.

    Google Scholar 

  17. Guo Y, Ifju P, Boeman R, Dai F (1999, September–October) Formation of specimen grating for moiré interferometry applications. Exp Tech 23(5):28–32.

    Google Scholar 

  18. Su F, Chian KS, Yi S, Dai F (2005, September) Development and instrumentation of an integrated three-dimensional optical testing system for application in integrated circuit packaging. Rev Sci Instrum 76(9): Art.No.093109.

  19. Chao L (2002) Studies on a multifunctional moiré interferometer measurement system. Dissertation for the degree of Master of Engineering, Tsinghua Univ. Beijing.

  20. Zhaoyang W (2003) Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

  21. Kreis T (1996) Holographic interferometry. Akademie Verlag, Berlin.

    Google Scholar 

  22. Malacara D, Servin M, Malacara Z (1998) Interferogram analysis for optical testing. Marcel Dekker Inc., New York.

    Google Scholar 

  23. Jain A (1989) Fundamentals of digital image processing. Prentice-Hall International Inc., London.

    MATH  Google Scholar 

  24. Jin G (1997) Computer-aided optical measurements. Tsinghua University Press, Beijing.

    Google Scholar 

  25. Yatagai T (1993) Internsity based analysis methods. In: Robinson DW, Reid GT (eds) Interferogram analysis. IOP Publishing, London, pp 73–93.

    Google Scholar 

  26. Mastin G, Ghiglia D (1985) Digital extraction of interference fringe contours. Appl Opt 24:1727–1728.

    Google Scholar 

  27. Chen T, Taylar C (1989) Computerized fringe analysis in photomechanics. Exp Mech 29(3):323–329.

    Article  Google Scholar 

  28. Morimoto Y (1994) Digital image processing. In: Kobayashi A (ed) Handbook on experimental mechanics, 2nd edn. SEM.

  29. Yatagai T, Nakadate S, Idesawa M, et al. (1982) Automatic fringe analysis using digital image processing techniques. Opt Eng 21(3):432–435.

    Google Scholar 

  30. Yatagai T (1991) Automatic fringe analysis techniques in Japan. Opt Lasers Eng 15(2):79–91.

    Article  Google Scholar 

  31. Bastawros A, Voloshin A (1990) Thermal strain measurements in electronic packages through fractional fringe moiré interferometry. J Electron Packag, Trans ASME 112(4):303–308.

    Google Scholar 

  32. Bertolino F, Ginesu F (1993) Semiautomatic approach of grating techniques. Opt Lasers Eng 19:313–323.

    Article  Google Scholar 

  33. Ennos A, Robinson D, Williams D (1985) Automatic fringe analysis in holographic interferometry. Opt Acta 32:135–145.

    Google Scholar 

  34. Krishnaswamy S (1991) Algorithm for computer tracing of interference fringes. Appl Opt 30:1624–1628.

    Article  Google Scholar 

  35. Aparicio J (1993) Improved algorithm for the analysis of holographic interferograms. Opt Eng 32(5):963–969.

    Article  Google Scholar 

  36. Zhang D, Ma M, Arola D (2002) Fringe skeletonizing using an improved derivative sign binary method. Opt Lasers Eng 37:51–62.

    Article  Google Scholar 

  37. Zhang D, Arola D, Ma M (2002) Digital image processing of moiré fringe patterns with an application to fractures in bovine dentin. Opt Eng 41(5):1115–1121.

    Article  Google Scholar 

  38. Rosenfeld A (1975) A characterization of parallel thinning algorithms. Inf Control 29:286–291.

    Article  MathSciNet  MATH  Google Scholar 

  39. Rosenfeld A, Kak A (1982) Digital picture processing, vol. I, 2nd edn. Academic Press, New York.

    Google Scholar 

  40. Hilditch C (1983) Comparison of thinning algorithms on a parallel processor. Image Vis Comput 1:115–132.

    Article  Google Scholar 

  41. Wanxu Z (1997) Experiment study on meso-damage and fracture of aluminium polycrystals. Dissertation for the degree of Master of Engineering, Tsinghua Univ. Beijing.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Xie, H., Liu, B. et al. Study on Deformation of Polycrystalline Aluminum Alloy Using Moiré Interferometry. Exp Mech 46, 699–711 (2006). https://doi.org/10.1007/s11340-006-9823-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-006-9823-9

Keywords

Navigation