Skip to main content

Advertisement

Log in

A Penalty Approach to Differential Item Functioning in Rasch Models

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A new diagnostic tool for the identification of differential item functioning (DIF) is proposed. Classical approaches to DIF allow to consider only few subpopulations like ethnic groups when investigating if the solution of items depends on the membership to a subpopulation. We propose an explicit model for differential item functioning that includes a set of variables, containing metric as well as categorical components, as potential candidates for inducing DIF. The ability to include a set of covariates entails that the model contains a large number of parameters. Regularized estimators, in particular penalized maximum likelihood estimators, are used to solve the estimation problem and to identify the items that induce DIF. It is shown that the method is able to detect items with DIF. Simulations and two applications demonstrate the applicability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Agresti, A. (2002). Categorical data analysis. New York: Wiley.

    Book  Google Scholar 

  • Andersen, E. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123–140. doi:10.1007/BF02291180.

    Article  Google Scholar 

  • Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.

    Article  Google Scholar 

  • Bondell, H., Krishna, A., & Ghosh, S. (2010). Joint variable selection for fixed and random effects in linear mixed-effects models. Biometrics, 1069–1077.

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, J.C. (1984). Classification and regression trees. Monterey: Wadsworth.

    Google Scholar 

  • Bühlmann, P., & Hothorn, T. (2007). Boosting algorithms: regularization, prediction and model fitting (with discussion). Statistical Science, 22, 477–505.

    Article  Google Scholar 

  • Eilers, P.H.C., & Marx, B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89–121.

    Article  Google Scholar 

  • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalize likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348–1360.

    Article  Google Scholar 

  • Friedman, J.H., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.

    PubMed Central  PubMed  Google Scholar 

  • Fu, W.J. (1998). Penalized regression: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 7, 397–416.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J.H. (2009). The elements of statistical learning (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Hoerl, A.E., & Kennard, R.W. (1970). Ridge regression: bias estimation for nonorthogonal problems. Technometrics, 12, 55–67.

    Article  Google Scholar 

  • Holland, P.W., & Thayer, D.T. (1988). Differential item performance and the Mantel-Haenszel procedure. In Test validity (pp. 129–145).

    Google Scholar 

  • Holland, W., & Wainer, H. (1993). Differential item functioning. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kim, S.-H., Cohen, A.S., & Park, T.-H. (1995). Detection of differential item functioning in multiple groups. Journal of Educational Measurement, 32(3), 261–276.

    Article  Google Scholar 

  • Knight, K., & Fu, W. (2000). Asymptotics for lasso-type estimators. Annals of Statistics, 1356–1378.

  • LeCessie (1992). Ridge estimators in logistic regression. Applied Statistics, 41(1), 191–201.

    Article  Google Scholar 

  • Lord, F.M. (1980). Applications of item response theory to practical testing problems. London: Routledge.

    Google Scholar 

  • Magis, D., Beland, S., & Raiche, G. (2013). difR: collection of methods to detect dichotomous differential item functioning (DIF) in psychometrics. R package version 4.4.

  • Magis, D., Bèland, S., Tuerlinckx, F., & Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior Research Methods, 42(3), 847–862.

    Article  PubMed  Google Scholar 

  • Magis, D., Raîche, G., Béland, S., & Gérard, P. (2011). A generalized logistic regression procedure to detect differential item functioning among multiple groups. International Journal of Testing, 11(4), 365–386.

    Article  Google Scholar 

  • Mair, P., & Hatzinger, R. (2007). Extended Rasch modeling: the erm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1–20.

    Google Scholar 

  • Mair, P., Hatzinger, R., & Maier, M.J. (2012). eRm: extended Rasch modeling. R package version 0.15-0.

  • Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute, 22(4), 719–748.

    PubMed  Google Scholar 

  • Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.

    Article  Google Scholar 

  • McCullagh, P., & Nelder, J.A. (1989). Generalized linear models (2nd ed.). New York: Chapman & Hall.

    Book  Google Scholar 

  • Meier, L. (2009). grplasso: fitting user specified models with Group Lasso penalty. R package version 0.4-2.

  • Meier, L., van de Geer, S., & Bühlmann, P. (2008). The group lasso for logistic regression. Journal of the Royal Statistical Society. Series B, 70, 53–71.

    Article  Google Scholar 

  • Merkle, E.C., & Zeileis, A. (2013). Tests of measurement invariance without subgroups: a generalization of classical methods. Psychometrika, 78, 59–82.

    Article  PubMed  Google Scholar 

  • Millsap, R., & Everson, H. (1993). Methodology review: statistical approaches for assessing measurement bias. Applied Psychological Measurement, 17(4), 297–334.

    Article  Google Scholar 

  • Ni, X., Zhang, D., & Zhang, H.H. (2010). Variable selection for semiparametric mixed models in longitudinal studies. Biometrics, 66, 79–88.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nyquist, H. (1991). Restricted estimation of generalized linear models. Applied Statistics, 40, 133–141.

    Article  Google Scholar 

  • Osborne, M., Presnell, B., & Turlach, B. (2000). On the lasso and its dual. Journal of Computational and Graphical Statistics, 9(2), 319–337.

    Google Scholar 

  • Osterlind, S., & Everson, H. (2009). Differential item functioning (Vol. 161). Thousand Oaks: Sage Publications, Inc.

    Book  Google Scholar 

  • Park, M.Y., & Hastie, T. (2007). An l1 regularization-path algorithm for generalized linear models. Journal of the Royal Statistical Society. Series B, 69, 659–677.

    Article  Google Scholar 

  • Penfield, R.D. (2001). Assessing differential item functioning among multiple groups: a comparison of three Mantel-Haenszel procedures. Applied Measurement in Education, 14(3), 235–259.

    Article  Google Scholar 

  • R Core Team (2012). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

    Google Scholar 

  • Raju, N.S. (1988). The area between two item characteristic curves. Psychometrika, 53(4), 495–502.

    Article  Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.

    Google Scholar 

  • Rogers, H. (2005). Differential item functioning. In Encyclopedia of statistics in behavioral science.

    Google Scholar 

  • Samejima, F. (1997). Graded response model. In Handbook of modern item response theory (pp. 85–100).

    Chapter  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • Segerstedt, B. (1992). On ordinary ridge regression in generalized linear models. Communications in Statistics. Theory and Methods, 21, 2227–2246.

    Article  Google Scholar 

  • Soares, T., Gonçalves, F., & Gamerman, D. (2009). An integrated Bayesian model for dif analysis. Journal of Educational and Behavioral Statistics, 34(3), 348–377.

    Article  Google Scholar 

  • Somes, G.W. (1986). The generalized Mantel–Haenszel statistic. American Statistician, 40(2), 106–108.

    Google Scholar 

  • Strobl, C., Kopf, J., & Zeileis, A. (2013). Rasch trees: a new method for detecting differential item functioning in the Rasch model. Psychometrika. doi:10.1007/s11336-013-9388-3.

    PubMed  Google Scholar 

  • Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychological Methods, 14, 323–348.

    Article  PubMed Central  PubMed  Google Scholar 

  • Swaminathan, H., & Rogers, H.J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27(4), 361–370.

    Article  Google Scholar 

  • Thissen, D., Steinberg, L., & Wainer, H. (1993). Detection of differential item functioning using the parameters of item response models. In P. Holland & H. Wainer (Eds.), Differential item functioning (pp. 67–113). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B, 58, 267–288.

    Google Scholar 

  • Tutz, G. (2012). Regression for categorical data. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tutz, G., & Binder, H. (2006). Generalized additive modeling with implicit variable selection by likelihood-based boosting. Biometrics, 62, 961–971.

    Article  PubMed  Google Scholar 

  • Van den Noortgate, W., & De Boeck, P. (2005). Assessing and explaining differential item functioning using logistic mixed models. Journal of Educational and Behavioral Statistics, 30(4), 443–464.

    Article  Google Scholar 

  • Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society. Series B, 68, 49–67.

    Article  Google Scholar 

  • Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17(2), 492–514.

    Article  Google Scholar 

  • Zou, H., Hastie, T., & Tibshirani, R. (2007). On the “degrees of freedom” of the lasso. The Annals of Statistics, 35(5), 2173–2192.

    Article  Google Scholar 

  • Zumbo, B. (1999). A handbook on the theory and methods of differential item functioning (dif). Ottawa: National Defense Headquarters.

    Google Scholar 

Download references

Acknowledgements

We thank the editor, an unknown reviewer, and Paul De Boeck for their helpful and constructive comments that improved presentation and content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Tutz.

Appendix

Appendix

Proposition

Let for the parameters of the general model with predictor \(\eta _{pi}=\theta_{p} -\beta_{i}-\boldsymbol {x}^{T}_{p} \boldsymbol {\gamma }_{i}\) be constrained by β I =0, \(\boldsymbol {\gamma }_{I}^{T}=(0,\dots,0)\) and let the matrix X with rows \((1,\boldsymbol {x}^{T}_{1}),\dots,(1,\boldsymbol {x}^{T}_{P})\) have full rank. Then parameters are identifiable.

Proof

Let two sets of parameters that fulfill the constraints be given such that

$$\eta_{pi}=\theta_p -\beta_i- \boldsymbol {x}^T_p \boldsymbol {\gamma }_i=\tilde{\theta}_p -\tilde{\beta}_i-\boldsymbol {x}^T_p \tilde{\boldsymbol {\gamma }}_i $$

for all persons and items. From considering item I and person p, one obtains by using \(\beta_{I}=\tilde{\beta}_{I}=0\), \(\boldsymbol {\gamma }_{I}^{T}=\tilde{\boldsymbol {\gamma }}_{I}^{T}=(0,\dots,0)\) \(\theta_{p}=\tilde{\theta}_{p}\). Therefore, one has \(\beta_{i}+\boldsymbol {x}^{T}_{p} \boldsymbol {\gamma }_{i}=\tilde{\beta}_{i}+\boldsymbol {x}^{T}_{p} \tilde{\boldsymbol {\gamma }}_{i}\) for all p, i, which for item i can be written in matrix form as

$$\boldsymbol {X}(\beta_i, \boldsymbol {\gamma }_i)^T = \boldsymbol {X}(\tilde{\beta}_i, \tilde{\boldsymbol {\gamma }}_i)^T. $$

One can multiply on both sides of the equation with X T, and, since X has full rank, with the inverse (X T X)−1, obtaining \((\beta_{i}, \boldsymbol {\gamma }_{i})^{T}=(\tilde{\beta}_{i}, \tilde{\boldsymbol {\gamma }}_{i})^{T}\). Alternatively, one can use the single value decomposition of X. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tutz, G., Schauberger, G. A Penalty Approach to Differential Item Functioning in Rasch Models. Psychometrika 80, 21–43 (2015). https://doi.org/10.1007/s11336-013-9377-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-013-9377-6

Key words

Navigation