Skip to main content
Log in

A Polychoric Instrumental Variable (PIV) Estimator for Structural Equation Models with Categorical Variables

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

This paper presents a new polychoric instrumental variable (PIV) estimator to use in structural equation models (SEMs) with categorical observed variables. The PIV estimator is a generalization of Bollen’s (Psychometrika 61:109–121, 1996) 2SLS/IV estimator for continuous variables to categorical endogenous variables. We derive the PIV estimator and its asymptotic standard errors for the regression coefficients in the latent variable and measurement models. We also provide an estimator of the variance and covariance parameters of the model, asymptotic standard errors for these, and test statistics of overall model fit. We examine this estimator via an empirical study and also via a small simulation study. Our results illustrate the greater robustness of the PIV estimator to structural misspecifications than the system-wide estimators that are commonly applied in SEMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bentler, P.M. (1995). EQS structural equations program manual. Encino, CA: Multivariate Software.

  • Bollen, K.A. (1989). Structural equations with latent variables. New York: Wiley.

    Google Scholar 

  • Bollen, K.A. (1996a). An alternative Two Stage Least Squares (2SLS) estimator for latent variable equations. Psychometrika, 61, 109–121.

    Article  Google Scholar 

  • Bollen, K.A. (1996b). A limited information estimator for LISREL models with and without heteroscedasticity. In G.A. Marcoulides, & R.E. Schumacker (Eds.), Advanced structural equation modeling (pp. 227–241). Mahwah, NJ: Erlbaum.

  • Bollen, K.A. (2001). Two-stage least squares and latent variable models: Simultaneous estimation and robustness to misspecifications. In R. Cudeck, S. Du Toit, & D. Sörbom (Eds.), Structural equation modeling: Present and future (pp. 119–138). Lincolnwood, IL: Scientific Software.

  • Bollen, K.A. (2002). Polychoric two-stage least squares (P2SLS) in structural equation models with categorical variables. Unpublished manuscript. University of North Carolina at Chapel Hill.

  • Bollen, K.A., & Bauer, D.J. (2004). Automating the selection of model-implied instrumental variables. Sociological Methods and Research, 32, 425–452.

    Article  Google Scholar 

  • Bollen, K.A., Kirby, J.B., Curran, P.J., Paxton, P.M., & Chen, F. (2007). Latent variable models under misspecification: Two Stage Least Squares (2SLS) and Maximum Likelihood (ML) estimators. Sociological Methods and Research, in press.

  • Bowden, R.J., & Turkington, D.A. (1984). Instrumental variables. Cambridge: Cambridge University Press.

    Google Scholar 

  • Browne, M.W. (1984). Asymptotically distribution free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62–63.

    PubMed  Google Scholar 

  • Browne, M.W., & Arminger, G. (1995). Specification and estimation of mean and covariance structure models. In G. Arminger, C.C. Clogg, & M.E. Sobel (Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 185–249). New York: Plenum.

    Google Scholar 

  • Cai, L., Maydeu-Olivares, A., Coffman, D.L., & Thissen, D. (2006). Limited information goodness of fit testing of item response theory models for sparse 2p tables. British Journal of Mathematical and Statistical Psychology, 59, 173–194.

    Article  PubMed  Google Scholar 

  • Chang, E.C., D’Zurilla, T.J., & Maydeu-Olivares, A. (1994). Assessing the dimensionality of optimism and pessimism using a multimeasure approach. Cognitive Therapy and Research, 18, 143–160.

    Article  Google Scholar 

  • Cragg, J.G. (1968). Some effects of incorrect specification on the small sample properties of several simultaneous equation estimators. International Economic Review, 9, 63–66.

    Article  Google Scholar 

  • Flora, D.B. (2002). Evaluation of categorical variable methodology for confirmatory factor analysis with Likert-type data. Unpublished Dissertation: University of North Carolina at Chapel Hill.

  • Flora, D.B., & Curran, P.J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491.

    Article  PubMed  Google Scholar 

  • Gunsjö, A. (1994). Faktoranalys av ordinala variabler. Acta Universitas Upsaliensis. Studia Statistica Upsaliensia 2. Stockholm: Almqvist & Wiksell.

    Google Scholar 

  • Hägglund, G. (1982). Factor analysis by instrumental variables. Psychometrika, 47, 209–222.

    Article  Google Scholar 

  • Hipp, J., & Bollen, K.A. (2003). Model fit in structural equation models with censored, ordinal, and dichotomous variables: Testing vanishing tetrads. Sociological Methodology, 33, 267–305.

    Article  Google Scholar 

  • Jöreskog, K.G. (1973). A general method for estimating a linear structural equation. In A. Goldberger, & O. Duncan (Eds.), Structural equation models in the social sciences. New York: Seminar Press.

    Google Scholar 

  • Jöreskog, K.G. (1983). Factor analysis as an error-in-variables model. In H. Wainer, & S. Messick (Eds.), Principles of modern psychological measurement (pp. 185–196). Hillsdale, NJ: Erlbaum.

  • Jöreskog, K.G. (1994). On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika, 59, 381–390.

    Article  Google Scholar 

  • Jöreskog, K.G., & Sörbom, D. (1984). LISREL VI: Analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods. Mooresville, IN: Scientific Software.

  • Jöreskog, K.G., & Sörbom, D. (2001). LISREL 8. Chicago: Scientific Software.

    Google Scholar 

  • Jöreskog, K.G., Sörbom, D., du Toit, S., & du Toit, M. (2001). LISREL 8: New statistical features. Chicago: Scientific Software.

    Google Scholar 

  • Küsters, U.L. (1987). Hierarchische Mittelwert- und Kovarianztrukturmodelle mit nichtmetrischen endogenen Variablen. Heidelberg: Physica-Verlag.

    Google Scholar 

  • Lee, S.Y., Poon, W.Y., & Bentler, P.M. (1995). A two-stage estimation of structural equation models with continuous and polytomous variables. British Journal of Mathematical and Statistical Psychology, 48, 339–358.

    PubMed  Google Scholar 

  • Madansky, A. (1964). Instrumental variables in factor analysis. Psychometrika, 29, 105–113.

    Article  Google Scholar 

  • Maydeu-Olivares, A. (2001). Limited information estimation and testing of Thurstonian models for paired comparison data under multiple judgment sampling. Psychometrika, 66, 209–228.

    Article  Google Scholar 

  • Maydeu-Olivares, A. (2006). Limited information estimation and testing of discretized multivariate normal structural models. Psychometrika, 71, 57–67.

    Article  Google Scholar 

  • Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551–560.

    Article  Google Scholar 

  • Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115–132.

    Article  Google Scholar 

  • Muthén, B. (1993). Goodness of fit with categorical and other nonnormal variables. In K.A. Bollen, & J.S. Long (Eds.), Testing structural equation models (pp. 205–234). Newbury Park, CA: Sage.

  • Muthén, L., & Muthén, B. (2001). MPLUS. Los Angeles: Muthén & Muthén.

    Google Scholar 

  • Muthén, B., & Satorra, A. (1995). Technical aspects of Muthén’s LISCOMP approach to estimation of latent variable relations with a comprehensive measurement model. Psychometrika, 60, 489–503.

    Article  Google Scholar 

  • Muthén, B., du Toit, S.H.C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Unpublished manuscript. College of Education, UCLA, Los Angeles, CA.

  • Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44, 443–460.

    Article  Google Scholar 

  • Poon, W.Y., & Lee, S.Y. (1987). Maximum-likelihood-estimation of multivariate polyserial and polychoric correlation-coefficients. Psychometrika, 52, 409–430.

    Article  Google Scholar 

  • Quiroga, A.M. (1992). Studies of the polychoric correlation and other correlation measures for ordinal variables. PhD Dissertation, Uppsala University, Department of Statistics.

  • Satorra, A. (1989). Alternative test criteria in covariance structure analysis: A unified approach. Psychometrika, 54, 131–151.

    Article  Google Scholar 

  • Satorra, A., & Bentler, P.M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye, & C.C. Clogg (Eds.), Latent variable analysis: Applications to developmental research (pp. 399–419). Thousand Oaks, CA: Sage.

  • Scheier, M.F., & Carver, C.S. (1985). Optimism, coping, and health: Assessment and implications of generalized outcome expectancies. Health Psychology, 4, 219–247.

    Article  PubMed  Google Scholar 

  • Yuan, K.H.B., & Bentler, P.M. (1997). Mean and covariance structure analysis: Theoretical and practical improvements. Journal of the American Statistical Association, 92, 767–774.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Bollen.

Additional information

Kenneth Bollen gratefully acknowledges support from NSF SES 0617276, NIDA 1-RO1-DA13148-01, and DA013148-05A2. Albert Maydeu-Olivares was supported by the Department of Universities, Research and Information Society (DURSI) of the Catalan Government, and by grant BSO2003-08507 from the Spanish Ministry of Science and Technology. We thank Sharon Christ, John Hipp, and Shawn Bauldry for research assistance. The comments of the members of the Carolina Structural Equation Modeling (CSEM) group are greatly appreciated. An earlier version of this paper under a different title was presented by K. Bollen at the Psychometric Society Meetings, June, 2002, Chapel Hill, North Carolina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollen, K.A., Maydeu-Olivares, A. A Polychoric Instrumental Variable (PIV) Estimator for Structural Equation Models with Categorical Variables. Psychometrika 72, 309–326 (2007). https://doi.org/10.1007/s11336-007-9006-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-007-9006-3

Keywords

Navigation