Skip to main content
Log in

Exploring the positive involvement of primary motor cortex in observing motor sequences with music: a pilot study with tDCS

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Introduction

The present study aims at exploring the effects of the depolarization of the primary motor cortex (M1), which is supposed to be associated to the mirror neuron system (MNS), via transcranial direct current stimulation (tDCS), and of synchronous music on individuals’ responses to observed actions/non actions in a sample of individuals with low sports expertise.

The two main theories behind this study are linked to the role of the MNS in the human brain and the embodied cognition theory, which suggests an interdependent relationship between action, perception and cognition.

Method

Nineteen college students attending to BA in motor science watched five videos (one presenting a target motor action performed by a basketball player and the other four presenting human vs. non-human performed actions as a control), with or without background music and with or without anodal tDCS of the primary motor cortex.

Results and Conclusions

Data highlighted that observation promoted the activation of MNS, which led to a more deep and probably adequate processing of the stimulus. Music enhanced this effect, even when the MNS is affected by anodal stimulation, and should hence be considered as a valid support when both physical and psychological complications occur in rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Ann Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  2. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: A magnetic stimulation study. J Neurophysiol 73:2608–2611

    PubMed  CAS  Google Scholar 

  3. Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: A neuromagnetic study. Proc Nat Acad Sci USA 95:15061–15065

    Article  PubMed  CAS  Google Scholar 

  4. Iacoboni M, Woods RP, Brass M, Bekkering J, Mazziotta C, Gallese V (1999) Cortical mechanisms of human imitation. Science 286:2526–2528

    Article  PubMed  CAS  Google Scholar 

  5. Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670

    Article  PubMed  CAS  Google Scholar 

  6. Buccino G, Lui F, Canessa N, Patteri I, Lagravinese G, Benuzzi F, Porro CA, Rizzolatti G (2004) Neural circuits involved in the recognition of actions performed by nonconspecifics: An fMRI study. J Cognitive Neurosci 16:114–126

    Article  Google Scholar 

  7. Kilner JM, Paulignan Y, Blakemore SJ (2003) An interference effect of observed biological movement on action. Curr Biol 13:522–525

    Article  PubMed  CAS  Google Scholar 

  8. Tai YF, Scherfler C, Brooks DJ, Sawamoto N, Castiello U (2004) The human premotor cortex is ‘mirror’ only for biological actions. Current Biology 14:117–120

    Article  PubMed  CAS  Google Scholar 

  9. Gazzola V, Rizzolatti G, Wicker B, Keysers C (2007) The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. NeuroImage 35:1674–1684

    Article  PubMed  CAS  Google Scholar 

  10. Oberman LM, McCleery JP, Ramachandran VS, Pineda JA (2007) EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots. Neurocomputing 70:2194–2203

    Article  Google Scholar 

  11. Brandi L (2009) Dall’atto psico-fisiologico ai neuroni specchio. Quaderni del Dipartimento di Linguistica Università di Firenze 19:77–100

    Google Scholar 

  12. Barsalou LW, Santos A, Simmons WK, Wilson CD (2008) Language and simulation in conceptual processing. In: De Vega M, Glenberg AM, Graesser AC (eds) Symbols, embodiment, and meaning. Oxford University Press, Oxford

    Google Scholar 

  13. Kiefer M, Barsalou LW (2011) Grounding the human conceptual system in perception, action, and internal states. In: Prinz W, Beisert M, Herwig A (eds) Tutorials in action science. MIT Press, Cambridge

    Google Scholar 

  14. Kiefer M, Pulvermüller F (2012) Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex 48(7):805–825

    Article  PubMed  Google Scholar 

  15. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(3):633–639

    Article  PubMed  CAS  Google Scholar 

  16. Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, Rothwell JC, Lemon RN, Frackowiak RS (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22(2):495–504

    Article  PubMed  Google Scholar 

  17. Reidler JS, Zaghi S, Fregni F (2011) Neurophysiological Effect of Transcranical Direct Current Stimulation. In: Coben R, Evans JR (eds) Neurofeedback and Neuromodulation Techniques and Application. Elsevier, New York, pp 319–350

    Chapter  Google Scholar 

  18. Flöel A, Rösser N, Michka O, Knecht S, Breitenstein C (2008) Noninvasive brain stimulation improves language learning. J Cogn Neurosci 20(8):1415–1422

    Article  PubMed  Google Scholar 

  19. Boggio PS, Zaghi S, Lopes M, Fregni F (2008) Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur J Neurol 15(10):1124–1130

    Article  PubMed  CAS  Google Scholar 

  20. Fecteau S, Pascual-Leone A, Zald DH, Liguori P, Theoret H, Boggio PS, Fregni F (2007) Activation of prefrontal cortex by transcranical direct current stimulation reduces appetites for risk during ambiguous decision making. J Neurosci 27(23):6212–6218

    Article  PubMed  CAS  Google Scholar 

  21. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166(1):23–30

    Article  PubMed  Google Scholar 

  22. Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P, Sawaki L, Ungerleider L, Classen J (2005) Formation of a motor memory by action observation. J Neurosci 25(4125):9339–9346

    Article  PubMed  CAS  Google Scholar 

  23. Fadiga L, Buccino G, Craighero L, Fogassi L, Gallese V, Pavesi G (1999) Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia 37:147–158

    Article  PubMed  CAS  Google Scholar 

  24. Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG (2005) Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128(3):490–499

    Article  PubMed  Google Scholar 

  25. Hesse S, Werner C, Schonhardt EM, Bardeleben A, Jenrich W, Kirker SGB (2007) Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study. Restor Neurol Neurosci 25(1):9–15

    PubMed  CAS  Google Scholar 

  26. Schlaug G, Renga V, Nair DG (2008) Transcranial direct current stimulation in stroke recovery. Arch Neurol 65(12):1571–1576

    Article  PubMed  Google Scholar 

  27. Merzagora AC, Foffani G, Panyavin I, Mordillo-Mateos L, Aguilar J, Onaral B, Oliviero A (2010) Prefrontal hemodynamic changes produced by anodal direct current stimulation. Neuroimage 49(3):2304–2310

    Article  PubMed  CAS  Google Scholar 

  28. Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5:708–712

    Article  PubMed  Google Scholar 

  29. Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003) Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Suppl Clin Neurophysiol 56:255–276

    Article  PubMed  Google Scholar 

  30. Karageorghis CI, Terry PC, Lane AM (1999) Development and validation of an instrument to assess the motivational qualities of music in exercise and sport: the Brunel Music Rating Inventory. J Sports Sci 17:713–724

    Article  PubMed  CAS  Google Scholar 

  31. Large EW (2000) On synchronizing movements to music. Hum Movement Sci 19:527–566

    Article  Google Scholar 

  32. Terry PC, Karageorghis CI (2011) Music in sport and exercise. In: Morris T, Terry PC (eds) The new sport and exercise psychology companion. WV: Fitness Information Technology, Morgantown, pp 359–380

  33. Zatorre RJ, Halpern AR, Perry DW, Meyer E, Evans AC (1996) Hearing in the mind’s ear: a PET investigation of musical imagery and perception. J Cognitive Neurosci 8:29–46

    Article  CAS  Google Scholar 

  34. Dennis SS, Mulcahy RF (1980) Heart-rate changes during covert rehearsal and response execution. Percept Motor Skills 50(2):595–602

    Article  PubMed  CAS  Google Scholar 

  35. Ikuma LH, Nussbaum MA, Babski-Reeves KL (2009) Reliability of physiological and subjective responses to physical and psychosocial exposures during a simulated manufacturing task. Int J Ind Ergonom 39(5):813–820

    Article  Google Scholar 

  36. Levenson RW, Ruef AM (1997) Physiological aspects of emotional knowledge and rapport. In: Ickes W (ed) Empathic accuracy. Guilford Press, New York, pp 44–72

    Google Scholar 

  37. Lukavský J (2010) The effects of cognitive and emotional workload on physiological reactions in word association test in healthy adults. Studia Psychologica 52(1):15–22

    Google Scholar 

  38. Ritz T, Alatupa S, Thöns M, Dahme B (2002) Effects of affective picture viewing and imagery on respiratory resistance in nonasthmatic individuals. Psychophysiology 39(1):86–94

    Article  PubMed  Google Scholar 

  39. Schachter S, Singer JE (2001) Cognitive, social, and psychological determinants of emotional state. In: Parrott W (ed) Emotions in social psychology: Essential readings. Psychology Press, New York, pp 76–93

    Google Scholar 

  40. Scholey AB, Moss MC, Neave N, Wesnes K (1999) Cognitive performance, hyperoxia, and heart rate following oxygen administration in healthy young adults. Physiol Behav 67(5):783–789

    Article  PubMed  CAS  Google Scholar 

  41. Cohen RA, Coffman JD (1981) Beta-adrenergic vasodilator mechanism in the finger. Circ Res 49:1196–1201

    Article  PubMed  CAS  Google Scholar 

  42. Freedman RR, Sabharwal SC, Ianni P, Desai N, Wenig P, Mayes M (1988) Nonneural beta-adrenergic vasodilating mechanism in temperature biofeedback. Psychsom Med 50(4):394–401

    CAS  Google Scholar 

  43. Parr LA (2001) Cognitive and physiological markers of emotional awareness in chimpanzees (Pan troglodytes). Anim Cogn 4(3–4):223–229

    Article  Google Scholar 

  44. Krumhansl CL (1997) An exploratory study of musical emotions and psychophysiology. Can J Exp Psychol/Revue Canadienne De Psychologie Expérimentale 51(4):336–353

    Article  CAS  Google Scholar 

  45. Kleitman N (1963) Sleep and Wakefulness. University Of Chicago Press, Chicago

    Google Scholar 

  46. Wright KPJ, Hull JT, Czeisler CA (2002) Relationship between alertness, performance, and body temperature in humans. Am J Physiol Regul Integr Comp Physiol 283:R1370–R1377

    PubMed  CAS  Google Scholar 

  47. Ramautar JR, Romeijn N, Gómez-Herrero G, Piantoni G, Van Someren EW (2013) Coupling of infraslow fluctuations in autonomic and central vigilance markers: Skin temperature, EEG beta power and ERP P300 latency. Int J Psychophysiol 1. doi:10.1016/j.ijpsycho.2013.01.001

  48. Priori A, Berardelli A, Rona S, Accornero N, Manfredi M (1998) Polarization of the human motor cortex through the scalp. NeuroReport 9:2257–2260

    Article  PubMed  CAS  Google Scholar 

  49. Shepard R, Metzler J (1971) Mental rotation of three dimensional objects. Science 171(972):701–703

    Article  PubMed  CAS  Google Scholar 

  50. Martineau J, Andersson F, Barthélémy C, Cottier J, Destrieux C (2010) Atypical activation of the mirror neuron system during perception of hand motion in autism. Brain Res 1320:168–175

    Article  PubMed  CAS  Google Scholar 

  51. Monda M, Viggiano A, De Luca V (2013) Functional decortication lowers ventromedial hypothalamic activation induced by hippocampal neostigmine injection. Cerebral Cortex [serial online] 10(12):1242–1246. Available from: Science Citation Index, Ipswich. http://www.ncbi.nlm.nih.gov/pubmed/11073873 Accessed 26 Jun 2013

  52. Messina G, De Luca V, Monda M, et al (2013) Autonomic nervous system in the control of energy balance and body weight: personal contributions. Neurology Research International [serial online] 2013:639280. Available from: MEDLINE, Ipswich. http://www.ncbi.nlm.nih.gov/pubmed/23691314 Accessed 26 Jun 2013

  53. Buccino G, Solodkin A, Small SL (2006) Functions of the mirror neuron system: implications for neurorehabilitation. Cogn Behav Neurol 19:55–63

    Article  PubMed  Google Scholar 

  54. de Vries S, Mulder T (2007) Motor imagery and stroke rehabilitation: a critical discussion. J Rehabil Med 28:163–175

    Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Colombo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, B., Di Nuzzo, C., Missaglia, S. et al. Exploring the positive involvement of primary motor cortex in observing motor sequences with music: a pilot study with tDCS. Sport Sci Health 9, 89–96 (2013). https://doi.org/10.1007/s11332-013-0149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-013-0149-6

Keywords

Navigation