Skip to main content

Advertisement

Log in

The Role of PET Imaging in Patients with Prion Disease: A Literature Review

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Prion diseases are rare, rapidly progressive, and fatal incurable degenerative brain disorders caused by the misfolding of a normal protein called PrPC into an abnormal protein called PrPSc. Their highly variable clinical presentation mimics various degenerative and non-degenerative brain disorders, making diagnosis a significant challenge for neurologists. Currently, definitive diagnosis relies on post-mortem examination of nervous tissue to detect the pathogenic prion protein. The current diagnostic criteria are limited. While structural magnetic resonance imaging (MRI) remains the gold standard imaging modality for Creutzfeldt-Jakob disease (CJD) diagnosis, positron emission tomography (PET) using 18fluorine-fluorodeoxyglucose (18F-FDG) and other radiotracers have demonstrated promising potential in the diagnostic assessment of prion disease. In this context, a comprehensive and updated review exclusively focused on PET imaging in prion diseases is still lacking. We review the current value of PET imaging with 18F-FDG and non-FDG tracers in the diagnostic management of prion diseases. From the collected data, 18F-FDG PET mainly reveals cortical and subcortical hypometabolic areas in prion disease, although fails to identify typical pattern or laterality abnormalities to differentiate between genetic and sporadic prion diseases. Although the rarity of prion diseases limits the establishment of a definitive hypometabolism pattern, this review reveals some more prevalent 18F-FDG patterns associated with each disease subtype. Interestingly, in both sporadic and genetic prion diseases, the hippocampus does not show significant glucose metabolism alterations, appearing as a useful sign in the differential diagnosis with other neurodegenerative disease. In genetic prion disease forms, PET abnormality precedes clinical manifestation. Discordant diagnostic value for amyloid tracers among different prion disease subtypes was observed, needing further investigation. PET has emerged as a potential valuable tool in the diagnostic armamentarium for CJD. Its ability to visualize functional and metabolic brain changes provides complementary information to structural MRI, aiding in the early detection and confirmation of CJD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.

Similar content being viewed by others

References

  1. Uttley L, Carroll C, Wong R, Hilton DA, Stevenson M (2020) Creutzfeldt-Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation. Lancet Infect Dis 20:e2–e10

    Article  PubMed  Google Scholar 

  2. Iwasaki Y (2017) Creutzfeldt-Jakob disease. Neuropathology 37:174–188

    Article  CAS  PubMed  Google Scholar 

  3. Arbizu J, Giuliani A, Gallego Perez-Larraya J et al (2017) Emerging clinical issues and multivariate analyses in PET investigations. Q J Nucl Med Mol Imaging 61:386–404

    Article  PubMed  Google Scholar 

  4. Collins SJ, Sanchez-Juan P, Masters CL et al (2006) Determinants of diagnostic investigation sensitivities across the clinical spectrum of sporadic Creutzfeldt-Jakob disease. Brain 129:2278–2287

    Article  CAS  PubMed  Google Scholar 

  5. Puoti G, Bizzi A, Forloni G, Safar JG, Tagliavini F, Gambetti P (2012) Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol 11:618–628

    Article  CAS  PubMed  Google Scholar 

  6. Parchi P, Petersen RB, Chen SG et al (1998) Molecular pathology of fatal familial insomnia. Brain Pathol 8:539–548

    Article  CAS  PubMed  Google Scholar 

  7. Geschwind MD (2015) Prion diseases. Continuum (Minneap Minn) 21:1612–1638

    PubMed  Google Scholar 

  8. Jeong BH, Kim YS (2014) Genetic studies in human prion diseases. J Korean Med Sci 29:623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Minoshima S, Vesselle H, Lewis DH (2012) A case of Creutzfeldt-Jakob disease mimicking corticobasal degeneration: FDG PET, SPECT, and MRI findings. Clin Nucl Med 37:e173-175

    Article  PubMed  Google Scholar 

  10. Saint-Aubert L, Pariente J, Dumas H et al (2016) Case report of Lewy body disease mimicking Creutzfeldt-Jakob disease in a 44-year-old man. BMC Neurol 16:122

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miyazawa N (2017) Creutzfeldt-Jakob disease mimicking Alzheimer disease and dementia with Lewy bodies-findings of FDG PET with 3-dimensional stereotactic surface projection. Clin Nucl Med 42:e247–e248

    Article  PubMed  Google Scholar 

  12. Brown K, Mastrianni JA (2010) The prion diseases. J Geriatr Psychiatry Neurol 23:277–298

    Article  PubMed  Google Scholar 

  13. Zerr I, Kallenberg K, Summers DM et al (2009) Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain 132:2659–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chatzikonstantinou S, Kazis D, Karantali E et al (2021) A meta-analysis on RT-QuIC for the diagnosis of sporadic CJD. Acta Neurol Belg 121:341–349

    Article  PubMed  Google Scholar 

  15. Jones M, Odunsi S, du Plessis D et al (2014) Gerstmann-Straussler-Scheinker disease: novel PRNP mutation and VGKC-complex antibodies. Neurology 82:2107–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hermann P, Appleby B, Brandel JP et al (2021) Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol 20:235–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eisenmenger L, Porter MC, Carswell CJ et al (2016) Evolution of diffusion-weighted magnetic resonance imaging signal abnormality in sporadic Creutzfeldt-Jakob disease, with histopathological correlation. JAMA Neurol 73:76–84

    Article  PubMed  PubMed Central  Google Scholar 

  18. Minoshima S, Cross D, Thientunyakit T, Foster NL, Drzezga A (2022) (18)F-FDG PET imaging in neurodegenerative dementing disorders: insights into subtype classification, emerging disease categories, and mixed dementia with copathologies. J Nucl Med 63:2S-12S

    Article  CAS  PubMed  Google Scholar 

  19. Lu H, Jing D, Chen Y et al (2020) Metabolic changes detected by 18F-FDG PET in the preclinical stage of familial Creutzfeldt-Jakob disease. J Alzheimers Dis 77:1513–1521

    Article  CAS  PubMed  Google Scholar 

  20. Qi C, Zhang JT, Zhao W, Xing XW, Yu SY (2020) Sporadic Creutzfeldt-Jakob disease: a retrospective analysis of 104 cases. Eur Neurol 83:65–72

    Article  PubMed  Google Scholar 

  21. Cortelli P, Perani D, Montagna P et al (2006) Pre-symptomatic diagnosis in fatal familial insomnia: serial neurophysiological and 18FDG-PET studies. Brain 129:668–675

    Article  PubMed  Google Scholar 

  22. Krasnianski A, Bartl M, Sanchez Juan PJ et al (2008) Fatal familial insomnia: clinical features and early identification. Ann Neurol 63:658–661

    Article  PubMed  Google Scholar 

  23. Montagna P, Cortelli P, Avoni P et al (1998) Clinical features of fatal familial insomnia: phenotypic variability in relation to a polymorphism at codon 129 of the prion protein gene. Brain Pathol 8:515–520

    Article  CAS  PubMed  Google Scholar 

  24. Xing XW, Zhang JT, Zhu F et al (2012) Comparison of diffusion-weighted MRI with 18F-fluorodeoxyglucose-positron emission tomography/CT and electroencephalography in sporadic Creutzfeldt-Jakob disease. J Clin Neurosci 19:1354–1357

    Article  PubMed  Google Scholar 

  25. Renard D, Vandenberghe R, Collombier L, Kotzki PO, Pouget JP, Boudousq V (2013) Glucose metabolism in nine patients with probable sporadic Creutzfeldt-Jakob disease: FDG-PET study using SPM and individual patient analysis. J Neurol 260:3055–3064

    Article  CAS  PubMed  Google Scholar 

  26. Zhao W, Zhang JT, Xing XW et al (2013) Chinese specific characteristics of sporadic Creutzfeldt-Jakob disease: a retrospective analysis of 57 cases. PLoS ONE 8:e58442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krasnianski A, Sanchez Juan P, Ponto C et al (2014) A proposal of new diagnostic pathway for fatal familial insomnia. J Neurol Neurosurg Psychiatry 85:654–659

    Article  CAS  PubMed  Google Scholar 

  28. Ortega-Cubero S, Pagola I, Luquin MR et al (2015) Clinical and neuroimaging characteristics of 14 patients with prionopathy: a descriptive study. Neurologia 30:144–152

    Article  CAS  PubMed  Google Scholar 

  29. Abu-Rumeileh S, Redaelli V, Baiardi S et al (2018) Sporadic fatal insomnia in Europe: phenotypic features and diagnostic challenges. Ann Neurol 84:347–360

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y, Xing XW, Zhang JT et al (2016) Autoimmune encephalitis mimicking sporadic Creutzfeldt-Jakob disease: a retrospective study. J Neuroimmunol 295–296:1–8

    Article  PubMed  Google Scholar 

  31. Cortelli P, Perani D, Parchi P et al (1997) Cerebral metabolism in fatal familial insomnia: relation to duration, neuropathology, and distribution of protease-resistant prion protein. Neurology 49:126–133

    Article  CAS  PubMed  Google Scholar 

  32. Day GS, Gordon BA, Perrin RJ et al (2018) In vivo [(18)F]-AV-1451 tau-PET imaging in sporadic Creutzfeldt-Jakob disease. Neurology 90:e896–e906

    Article  PubMed  PubMed Central  Google Scholar 

  33. Deters KD, Risacher SL, Yoder KK et al (2016) [(11)C]PiB PET in Gerstmann-Straussler-Scheinker disease. Am J Nucl Med Mol Imaging 6:84–93

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Engler H, Lundberg PO, Ekbom K et al (2003) Multitracer study with positron emission tomography in Creutzfeldt-Jakob disease. Eur J Nucl Med Mol Imaging 30:85–95

    Article  CAS  PubMed  Google Scholar 

  35. Hamaguchi T, Kitamoto T, Sato T et al (2005) Clinical diagnosis of MM2-type sporadic Creutzfeldt-Jakob disease. Neurology 64:643–648

    Article  CAS  PubMed  Google Scholar 

  36. Henkel K, Zerr I, Hertel A et al (2002) Positron emission tomography with [(18)F]FDG in the diagnosis of Creutzfeldt-Jakob disease (CJD). J Neurol 249:699–705

    Article  PubMed  Google Scholar 

  37. Kim EJ, Cho SS, Jeong BH et al (2012) Glucose metabolism in sporadic Creutzfeldt-Jakob disease: a statistical parametric mapping analysis of (18) F-FDG PET. Eur J Neurol 19:488–493

    Article  PubMed  Google Scholar 

  38. Mente KP, O’Donnell JK, Jones SE et al (2017) Fluorodeoxyglucose positron emission tomography (FDG-PET) correlation of histopathology and MRI in prion disease. Alzheimer Dis Assoc Disord 31:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  39. Okamura N, Shiga Y, Furumoto S et al (2010) In vivo detection of prion amyloid plaques using [(11)C]BF-227 PET. Eur J Nucl Med Mol Imaging 37:934–941

    Article  CAS  PubMed  Google Scholar 

  40. Prieto E, Dominguez-Prado I, Riverol M et al (2015) Metabolic patterns in prion diseases: an FDG PET voxel-based analysis. Eur J Nucl Med Mol Imaging 42:1522–1529

    Article  CAS  PubMed  Google Scholar 

  41. Renard D, Castelnovo G, Collombier L, Thouvenot E, Boudousq V (2017) FDG-PET in Creutzfeldt-Jakob disease: analysis of clinical-PET correlation. Prion 11:440–453

    Article  PubMed  PubMed Central  Google Scholar 

  42. Szpak GM, Lewandowska E, Lechowicz W et al (2006) The brain immune response in human prion diseases. Microglial activation and microglial disease. I Sporadic Creutzfeldt-Jakob Disease Folia Neuropathol 44:202–213

    CAS  PubMed  Google Scholar 

  43. Kaneko M, Sugiyama N, Sasayama D et al (2008) Prion disease causes less severe lesions in human hippocampus than other parts of brain. Psychiatry Clin Neurosci 62:264–270

    Article  PubMed  Google Scholar 

  44. Anand KS, Dhikav V (2012) Hippocampus in health and disease: an overview. Ann Indian Acad Neurol 15:239–246

    Article  PubMed  PubMed Central  Google Scholar 

  45. Collins S, McLean CA, Masters CL (2001) Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, and kuru: a review of these less common human transmissible spongiform encephalopathies. J Clin Neurosci 8:387–397

    Article  CAS  PubMed  Google Scholar 

  46. DeArmond SJ, Prusiner SB (2002) Prion diseases. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 7th ed. Arnold, London, pp 273–323

  47. Kepe V, Ghetti B, Farlow MR et al (2010) PET of brain prion protein amyloid in Gerstmann-Straussler-Scheinker disease. Brain Pathol 20:419–430

    Article  PubMed  Google Scholar 

  48. Parchi P, Giese A, Capellari S et al (1999) Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46(2):224–233

    Article  CAS  PubMed  Google Scholar 

  49. Ukisu R, Kushihashi T, Kitanosono T et al (2005) Serial diffusion-weighted MRI of Creutzfeldt-Jakob disease. AJR Am J Roentgenol 184:560–566

    Article  PubMed  Google Scholar 

  50. Ukisu R, Kushihashi T, Tanaka E et al (2006) Diffusion-weighted MR imaging of early-stage Creutzfeldt-Jakob disease: typical and atypical manifestations. Radiographics 26(1):S191-204

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute equally to the conception, drafting, and revising the work.

Corresponding author

Correspondence to Fabrizio Cocciolillo.

Ethics declarations

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Maria Vittoria Mattoli and Romina Grazia Giancipoli are co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattoli, M.V., Giancipoli, R.G., Cocciolillo, F. et al. The Role of PET Imaging in Patients with Prion Disease: A Literature Review. Mol Imaging Biol 26, 195–212 (2024). https://doi.org/10.1007/s11307-024-01895-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-024-01895-0

Keywords

Navigation