Skip to main content

Advertisement

Log in

Alpha Particle–Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative “theranostic” platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Health Organization (2022) World health statistics 2022: monitoring health for the SDGs, sustainable development goals. World Health Organization, Geneva

  2. Ugai T, Sasamoto N, Lee HY et al (2022) Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat Rev Clin Oncol 19:656–673

    PubMed  PubMed Central  Google Scholar 

  3. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2020). Global cancer observatory: cancer today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.fr/today, Accessed 07 Oct 2022.

  4. Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73:17–48

    PubMed  Google Scholar 

  5. Cancer Moonshot Blue Ribbon Panel (2016) Report 2016. National Cancer Institute, Bethesda, MD

    Google Scholar 

  6. Stokke C, Kvassheim M, Blakkisrud J (2022) Radionuclides for targeted therapy: physical properties. Molecules 27:20

    Google Scholar 

  7. Murshed H (2019) Chapter 3-radiation biology. Third ed. Academic Press

    Google Scholar 

  8. Berger MJ, Coursey JS, Zucker MA, Chang J (2009) Stopping-power and range tables for electrons, protons, and helium ions. NIST Physical Measurement Laboratory. https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html. Updated 15 Nov 2019 by Seltzer SM and Bergstrom PM. Accessed 30 Sept 2022

  9. Howell RW (2023) Advancements in the use of Auger electrons in science and medicine during the period 2015-2019. Int J Radiat Biol 99:2–27

    CAS  PubMed  Google Scholar 

  10. Ferris T, Carroll L, Jenner S, Aboagye EO (2021) Use of radioiodine in nuclear medicine-a brief overview. J Label Compd Radiopharm 64:92–108

    CAS  Google Scholar 

  11. Muller C, Bunka M, Haller S et al (2014) Promising prospects for Sc-44-/Sc-47-based theragnostics: application of Sc-47 for radionuclide tumor therapy in mice. J Nucl Med 55:1658–1664

    CAS  PubMed  Google Scholar 

  12. Baum RP, Singh A, Kulkarni HR et al (2021) First-in-humans application of Tb-161: a feasibility study using Tb-161-DOTATOC. J Nucl Med 62:1391–1397

    PubMed  PubMed Central  Google Scholar 

  13. Marin I, Ryden T, Van Essen M et al (2020) Establishment of a clinical SPECT/CT protocol for imaging of(161)Tb. EJNMMI Phys 7:16

    Google Scholar 

  14. Borgna F, Barritt P, Grundler PV et al (2021) Simultaneous visualization of Tb-161- and Lu-177-labeled somatostatin analogues using dual-isotope SPECT imaging. Pharmaceutics 13:13

    Google Scholar 

  15. Muller C, Reber J, Haller S et al (2014) Direct in vitro and in vivo comparison of Tb-161 and Lu-177 using a tumour-targeting folate conjugate. Eur J Nucl Med Mol Imaging 41:476–485

    CAS  PubMed  Google Scholar 

  16. Muller C, Vermeulen C, Koster U et al (2016) Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm Chem 1:5

    PubMed  PubMed Central  Google Scholar 

  17. Shen S, DeNardo GL, DeNardo SJ et al (1996) Dosimetric evaluation of copper-64 in copper-67-2IT-BAT-Lym-1 for radioimmunotherapy. J Nucl Med 37:146–150

    CAS  PubMed  Google Scholar 

  18. Kelly JM, Ponnala S, Amor-Coarasa A et al (2020) Preclinical evaluation of a high-affinity sarcophagine-containing PSMA ligand for Cu-64/Cu-67-based theranostics in prostate cancer. Mol Pharm 17:1954–1962

    CAS  PubMed  Google Scholar 

  19. Keinanen O, Fung K, Brennan JM et al (2020) Harnessing Cu-64/Cu-67 for a theranostic approach to pretargeted radioimmunotherapy. Proc Natl Acad Sci U S A 117:28316–28327

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McNeil BL, Mastroianni SA, McNeil SW et al (2023) Optimized production, purification, and radiolabeling of the Pb-203/Pb-212 theranostic pair for nuclear medicine. Sci Rep 13:12

    Google Scholar 

  21. Leonte RA, Chilug LE, Serban R et al (2021) Preparation and preliminary evaluation of neurotensin radiolabelled with Ga-68 and Lu-177 as potential theranostic agent for colon cancer. Pharmaceutics 13:19

    Google Scholar 

  22. Zhao RY, Ploessl K, Zha ZH et al (2020) Synthesis and evaluation of Ga-68- and Lu-177-labeled (R)- vs (S)-DOTAGA prostate-specific membrane antigen-targeting derivatives. Mol Pharm 17:4589–4602

    CAS  PubMed  Google Scholar 

  23. Heinzel A, Boghos D, Mottaghy FM et al (2019) Ga-68-PSMA PET/CT for monitoring response to Lu-177-PSMA-617 radioligand therapy in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 46:1054–1062

    CAS  PubMed  Google Scholar 

  24. Lau J, Kwon D, Rousseau E et al (2019) Ga-68 Ga/ Lu-177 Lu-BL01, A novel theranostic pair for targeting C-X-C chemokine receptor 4. Mol Pharm 16:4688–4695

    CAS  PubMed  Google Scholar 

  25. Weineisen M, Schottelius M, Simecek J et al (2015) Ga-68- and Lu-177-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med 56:1169–1176

    CAS  PubMed  Google Scholar 

  26. Rosecker V, Denk C, Maurer M et al (2019) Cross-isotopic bioorthogonal tools as molecular twins for radiotheranostic applications. ChemBioChem 20:1530–1535

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lepage ML, Kuo HT, Roxin A et al (2020) Toward F-18-labeled theranostics: a single agent that can be labeled with F-18, Cu-64, or Lu-177. ChemBioChem 21:943–947

    CAS  PubMed  Google Scholar 

  28. Whetter JN, Vaughn BA, Koller AJ, Boros E (2022) An unusual pair: facile formation and in vivo validation of robust Sc-F-18 ternary complexes for molecular imaging. Angew Chem-Int Edit 61:5

    Google Scholar 

  29. De Kruijff RM, Wolterbeek HT, Denkova AG (2015) A critical review of alpha radionuclide therapy-how to deal with recoiling daughters? Pharmaceuticals 8:321–336

    PubMed  PubMed Central  Google Scholar 

  30. Solomon VR, Alizadeh E, Bernhard W et al (2019) In-111- and Ac-225-Labeled cixutumumab for imaging and alpha-particle radiotherapy of IGF-1R positive triple-negative breast cancer. Mol Pharm 16:4807–4816

    CAS  PubMed  Google Scholar 

  31. Thiele NA, Brown V, Kelly JM et al (2017) An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy. Angew Chem-Int Edit 56:14712–14717

    CAS  Google Scholar 

  32. Hu A, Brown V, MacMillan SN et al (2022) Chelating the alpha therapy radionuclides Ac-225(3+) and Bi-213(3+) with 18-membered macrocyclic ligands macrodipa and Py-macrodipa. Inorg Chem 61:801–806

    CAS  PubMed  Google Scholar 

  33. Robertson AKH, Ramogida CF, Schaffer P, Radchenko V (2018) Development of Ac-225 radiopharmaceuticals: TRIUMF perspectives and experiences. Curr Radiopharm 11:156–172

    PubMed  PubMed Central  Google Scholar 

  34. Perron R, Gendron D, Causey PW (2020) Construction of a thorium/actinium generator at the Canadian nuclear laboratories. Appl Radiat Isot 164:13

    Google Scholar 

  35. Weidner JW, Mashnik SG, John KD et al (2012) Proton-induced cross sections relevant to production of Ac-225 and Ra-223 in natural thorium targets below 200 MeV. Appl Radiat Isot 70:2602–2607

    CAS  PubMed  Google Scholar 

  36. Baimukhanova A, Engudar G, Marinov G et al (2022) An alternative radiochemical separation strategy for isolation of Ac and Ra isotopes from high energy proton irradiated thorium targets for further application in targeted alpha therapy (TAT). Nucl Med Biol 112-113:35–43

    CAS  PubMed  Google Scholar 

  37. Zhuikov BL, Kalmykov SN, Ermolaev SV et al (2011) Production of Ac-225 and Ra-223 by irradiation of Th with accelerated protons. Radiochemistry 53:73–80

    CAS  Google Scholar 

  38. Weidner JW, Mashnik SG, John KD et al (2012) Ac-225 and Ra-223 production via 800 MeV proton irradiation of natural thorium targets. Appl Radiat Isot 70:2590–2595

    CAS  PubMed  Google Scholar 

  39. Ermolaev SV, Zhuikov BL, Kokhanyuk VM et al (2012) Production of actinium, thorium and radium isotopes from natural thorium irradiated with protons up to 141 MeV. Radiochim Acta 100:223–229

    CAS  Google Scholar 

  40. Sgouros G, He B, Ray N, Ludwig DL, Frey EC (2021) Dosimetric impact of Ac-227 in accelerator-produced Ac-225 for alpha-emitter radiopharmaceutical therapy of patients with hematological malignancies: a pharmacokinetic modeling analysis. EJNMMI Phys 8:16

    Google Scholar 

  41. Abou DS, Zerkel P, Robben J et al (2022) Radiopharmaceutical quality control considerations for accelerator-produced actinium therapies. Cancer Biother Radiopharm 37:355–363

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Apostolidis C, Molinet R, McGinley J, Abbas K, Mollenbeck J, Morgenstern A (2005) Cyclotron production of Ac-225 for targeted alpha therapy. Appl Radiat Isot 62:383–387

    CAS  PubMed  Google Scholar 

  43. Nagatsu K, Suzuki H, Fukada M et al (2021) Cyclotron production of Ac-225 from an electroplated Ra-226 target. Eur J Nucl Med Mol Imaging 49:279–289

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jacques V, Desreux JF (1996) Complexation of thorium(IV) and uranium(IV) by a hexaacetic hexaaza macrocycle: kinetic and thermodynamic topomers of actinide chelates with a large cavity ligand. Inorg Chem 35:7205–7210

    CAS  PubMed  Google Scholar 

  45. Heyerdahl H, Abbas N, Brevik EM, Mollatt C, Dahle J (2012) Fractionated therapy of HER2-expressing breast and ovarian cancer xenografts in mice with targeted alpha emitting Th-227-DOTA-p-benzyl-trastuzumab. PLoS One 7:14

    Google Scholar 

  46. Larsen RH, Borrebaek J, Dahle J et al (2007) Preparation of TH227-labeled radioimmunoconjugates, assessment of serum stability and antigen binding ability. Cancer Biother Radiopharm 22:431–437

    CAS  PubMed  Google Scholar 

  47. Deblonde GJP, Lohrey TD, Booth CH et al (2018) Solution thermodynamics and kinetics of metal complexation with a hydroxypyridinone chelator designed for thorium-227 targeted alpha therapy. Inorg Chem 57:14337–14346

    CAS  PubMed  Google Scholar 

  48. Ramdahl T, Bonge-Hansen HT, Ryan OB et al (2016) An efficient chelator for complexation of thorium-227. Bioorg Med Chem Lett 26:4318–4321

    CAS  PubMed  Google Scholar 

  49. Abou DS, Longtine M, Fears A et al (2023) Evaluation of candidate theranostics for 227Th/89Zr paired radioimmunotherapy of lymphoma. J Nucl Med 64:1062–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ferrier MG, Li YW, Chyan MK et al (2020) Thorium chelators for targeted alpha therapy: rapid chelation of thorium-226. J Label Compd Radiopharm 63:502–516

    CAS  Google Scholar 

  51. Kuznetsov RA, Butkalyuk PS, Tarasov VA et al (2012) Yields of activation products in Ra-226 irradiation in the high-flux SM reactor. Radiochemistry 54:383–387

    CAS  Google Scholar 

  52. Ivanov PI, Collins SM, van Es EM, Garcia-Miranda M, Jerome SM, Russell BC (2017) Evaluation of the separation and purification of Th-227 from its decay progeny by anion exchange and extraction chromatography. Appl Radiat Isot 124:100–105

    CAS  PubMed  Google Scholar 

  53. Soderquist CZ, McNamara BK, Fisher DR (2012) Production of high-purity radium-223 from legacy actinium-beryllium neutron sources. Curr Radiopharm 5:244–252

    CAS  PubMed  Google Scholar 

  54. Abou DS, Pickett J, Mattson JE, Thorek DLJ (2017) A radium-223 microgenerator from cyclotron-produced trace actinium-227. Appl Radiat Isot 119:36–42

    CAS  PubMed  Google Scholar 

  55. Guseva LI, Tikhomirova GS, Dogadkin NN (2004) Anion-exchange separation of radium from alkaline-earth metals and actinides in aqueous-methanol solutions of HNO3. 227Ac-223Ra Generator. Radiochemistry 46:58–62

    CAS  Google Scholar 

  56. Butkalyuk PS, Butkalyuk IL, Andreev OI, Kupriyanov AS, Rotmanov KV, Kazakova EV (2022) Production of pilot batches Ra-223 and Th-227 of medical purpose. Appl Radiat Isot 184:6

    Google Scholar 

  57. Beyer GJ, Miederer M, Vranjes-duric S et al (2004) Targeted alpha therapy in vivo: direct evidence for single cancer cell kill using Tb-149-rituximab. Eur J Nucl Med Mol Imaging 31:547–554

    CAS  PubMed  Google Scholar 

  58. Muller C, Reber J, Haller S et al (2014) Folate receptor targeted alpha-therapy using terbium-149. Pharmaceuticals 7:353–365

    PubMed  PubMed Central  Google Scholar 

  59. Muller C, Zhernosekov K, Koster U et al (2012) A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for alpha- and beta(-)-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med 53:1951–1959

    CAS  PubMed  Google Scholar 

  60. Beyer GJ, Comor JJ, Dakovic M et al (2002) Production routes of the alpha emitting Tb-149 for medical application. Radiochim Acta 90:247–252

    CAS  Google Scholar 

  61. Augusto RMD, Buehler L, Lawson Z et al (2014) CERN-MEDICIS (Medical Isotopes Collected from ISOLDE): a new facility. Appl Sci-Basel 4:265–281

    Google Scholar 

  62. Duchemin C, Ramos JP, Stora T et al (2021) CERN-MEDICIS: a review since commissioning in 2017. Front Med 8:11

    Google Scholar 

  63. Maiti M, Lahiri S, Tomar BS (2011) Investigation on the production and isolation of Tb-149,Tb-150,Tb-151 from C-12 irradiated natural praseodymium target. Radiochim Acta 99:527–533

    CAS  Google Scholar 

  64. Steyn GF, Vermeulen C, Szelecsenyi F et al (2014) Cross sections of proton-induced reactions on Gd-152, Gd-155 and Tb-159 with emphasis on the production of selected Tb radionuclides. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms 319:128–140

    CAS  Google Scholar 

  65. Moiseeva AN, Aliev RA, Unezhev VN et al (2020) Cross section measurements of Eu-151(He-3,5n) reaction: new opportunities for medical alpha emitter Tb-149 production. Sci Rep 10:7

    Google Scholar 

  66. Zaitseva NG, Dmitriev SN, Maslov OD et al (2003) Terbium-149 for nuclear medicine. The production of Tb-149 via heavy ions induced nuclear reactions. Czechoslov J Phys 53:A455–A458

    CAS  Google Scholar 

  67. Wilkinson JT, Barrett KE, Ferran SJ et al (2021) A heavy-ion production channel of Tb-149 via Cu-63 bombardment of Y-89. Appl Radiat Isot 178:7

    Google Scholar 

  68. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    CAS  Google Scholar 

  69. McNeil BL, Robertson AKH, Fu W et al (2021) Production, purification, and radiolabeling of the Pb-203/Pb-212 theranostic pair. EJNMMI Radiopharm Chem 6:18

    Google Scholar 

  70. Atcher RW, Friedman AM, Hines JJ (1988) An improved generator for the production of Pb-212 and Bi-212 from Ra-224. Appl Radiat Isot 39:283–286

    CAS  Google Scholar 

  71. Hassfjell S (2001) A Pb-212 generator based on a Th-228 source. Appl Radiat Isot 55:433–439

    CAS  PubMed  Google Scholar 

  72. Hassfjell SP, Hoff P (1994) A generator for production of Pb-212 and Bi-212. Appl Radiat Isot 45:1021–1025

    CAS  Google Scholar 

  73. Narbutt J, Bilewicz A (1998) Gamma emitting radiotracers Ra-224, Pb-212 and Bi-212 from natural thorium. Appl Radiat Isot 49:89–91

    CAS  Google Scholar 

  74. Guseva LI (2007) A Ra-228-Pb-212 tandem generator for potential application in biomedical studies. J Radioanal Nucl Chem 272:153–159

    CAS  Google Scholar 

  75. Westrom S, Generalov R, Bonsdorff TB, Larsen RH (2017) Preparation of Pb-212-labeled monoclonal antibody using a novel Ra-224-based generator solution. Nucl Med Biol 51:1–9

    PubMed  Google Scholar 

  76. Ma DH, McDevitt MR, Finn RD, Scheinberg DA (2001) Breakthrough of Ac-225 and its radionuclide daughters from an Ac-225/Bi-213 generator: development of new methods, quantitative characterization, and implications for clinical use. Appl Radiat Isot 55:667–678

    CAS  PubMed  Google Scholar 

  77. McDevitt MR, Finn RD, Sgouros G, Ma DS, Scheinberg DA (1999) An Ac-225/Bi-213 generator system for therapeutic clinical applications: construction and operation. Appl Radiat Isot 50:895–904

    CAS  PubMed  Google Scholar 

  78. Champion J, Sabatie-Gogova A, Bassal F et al (2013) Investigation of astatine(III) hydrolyzed species: experiments and relativistic calculations. J Phys Chem A 117:1983–1990

    CAS  PubMed  Google Scholar 

  79. Champion J, Alliot C, Renault E et al (2010) Astatine standard redox potentials and speciation in acidic medium. J Phys Chem A 114:576–582

    CAS  PubMed  Google Scholar 

  80. Zalutsky MR, Garg PK, Friedman HS, Bigner DD (1989) Labeling monoclonal antibodies and F(ab’)2 fragments with the alpha-particle-emitting nuclide astatine-211 - preservation of immunoreactivity and in vivo localizing capacity. Proc Natl Acad Sci U S A 86:7149–7153

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zalutsky MR, Narula AS (1987) A method for the radiohalogenation of proteins resulting in decreased thyroid uptake of radioiodine. Appl Radiat Isot 38:1051–1055

    CAS  Google Scholar 

  82. Garg PK, Harrison CL, Zalutsky MR (1990) Comparative tissue distribution in mice of the alpha-emitter At-211 AND I-131 as labels of a monoclonal antibody and F(ab’)2 fragment. Cancer Res 50:3514–3520

    CAS  PubMed  Google Scholar 

  83. Zalutsky MR, Stabin MG, Larsen RH, Bigner DD (1997) Tissue distribution and radiation dosimetry of astatine-211-labeled chimeric 81C6, an alpha-particle-emitting immunoconjugate. Nucl Med Biol 24:255–261

    CAS  PubMed  Google Scholar 

  84. Wilbur DS, Vessella RL, Stray JE, Goffe DK, Blouke KA, Atcher RW (1993) Preparation and evaluation of para-[211At]astatobenzoyl labeled anti-renal cell-carcinoma antibody A6H F(ab’)2.. In vivo distribution comparison with para-[125I]iodobenzoyl labeled A6H F(ab’)2. Nucl Med Biol 20:917–927

    CAS  PubMed  Google Scholar 

  85. Hadley SW, Wilbur DS, Gray MA, Atcher RW (1991) Astatine-211 labeling of an antimelanoma antibody and its Fab fragment using N-succinimidyl para-astatobenzoate - comparisons in vivo with the para- 125I iodobenzoyl conjugate. Bioconjug Chem 2:171–179

    CAS  PubMed  Google Scholar 

  86. Orlova A, Hoglund J, Lubberink M et al (2002) Comparative biodistribution of the radiohalogenated (Br, I and At) antibody A33. Implications for in vivo dosimetry. Cancer Biother Radiopharm 17:385–396

    CAS  PubMed  Google Scholar 

  87. Teze D, Sergentu DC, Kalichuk V et al (2017) Targeted radionuclide therapy with astatine-211: oxidative dehalogenation of astatobenzoate conjugates. Sci Rep 7:9

    Google Scholar 

  88. Wilbur DS, Chyan MK, Hamlin DK, Vessella RL, Wedge TJ, Hawthorne MF (2007) Reagents for astatination of biomolecules. 2. Conjugation of anionic boron cage pendant groups to a protein provides a method for direct labeling that is stable to in vivo deastatination. Bioconjug Chem 18:1226–1240

    CAS  PubMed  Google Scholar 

  89. Wilbur DS, Chyan MK, Nakamae H et al (2012) Reagents for astatination of biomolecules. 6. An intact antibody conjugated with a maleimido-closo-decaborate(2-) reagent via sulfhydryl groups had considerably higher kidney concentrations than the same antibody conjugated with an isothiocyanato-closo-decaborate(2-) reagent via lysine amines. Bioconjug Chem 23:409–420

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Berdal M, Gouard S, Eychenne R et al (2021) Investigation on the reactivity of nucleophilic radiohalogens with arylboronic acids in water: access to an efficient single-step method for the radioiodination and astatination of antibodies. Chem Sci 12:1458–1468

    CAS  Google Scholar 

  91. Guerard F, Navarro L, Lee YS et al (2017) Bifunctional aryliodonium salts for highly efficient radioiodination and astatination of antibodies. Bioorg Med Chem 25:5975–5980

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Reilly SW, Makvandi M, Xu KY, Mach RH (2018) Rapid Cu-Catalyzed At-211 astatination and I-125 iodination of boronic esters at room temperature. Org Lett 20:1752–1755

    CAS  PubMed  PubMed Central  Google Scholar 

  93. US National Library of Medicine (2022) Radioimmunotherapy (211At-OKT10-B10) and chemotherapy (melphalan) before stem cell transplantation for the treatment of multiple myeloma. ClinicalTrials.gov https://beta.clinicaltrials.gov/study/NCT04466475. Accessed 1 Nov 2022

  94. US National Library of Medicine (2022) ²¹¹At-OKT10-B10 and fludarabine alone or in combination with cyclophosphamide and low-dose TBI before donor stem cell transplant for the treatment of newly diagnosed, recurrent, or refractory high-risk multiple myeloma. ClinicalTrials.gov https://beta.clinicaltrials.gov/study/NCT04579523. Accessed 1 Nov 2022

  95. US National Library of Medicine (2017) 211^At-BC8-B10 before donor stem cell transplant in treating patients with high-risk acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, or mixed-phenotype acute leukemia. ClinicalTrials.gov https://beta.clinicaltrials.gov/study/NCT03128034. Accessed 1 Nov 2022

  96. US National Library of Medicine (2020) Total body irradiation and astatine-211-labeled BC8-B10 monoclonal antibody for the treatment of nonmalignant diseases. ClinicalTrials.gov https://beta.clinicaltrials.gov/study/NCT04083183. Accessed 1 Nov 2022

  97. US National Library of Medicine (2021) Targeted alpha therapy using astatine (At-211) against differentiated thyroid cancer. ClinicalTrials.gov https://beta.clinicaltrials.gov/study/NCT05275946. Accessed 1 Nov 2022

  98. US National Library of Medicine (2019) 211At-BC8-B10 followed by donor stem cell transplant in treating patients with relapsed or refractory high-risk acute leukemia or myelodysplastic syndrome. ClinicalTrials.gov https://beta.clinicaltrials.gov/study/NCT03670966. Accessed 1 Nov 2022

  99. Lambrecht RM, Mirzadeh S (1985) Cyclotron isotopes and radiopharmaceuticals .35. Astatine-211. Int J Appl Radiat Isot 36:443–450

    CAS  Google Scholar 

  100. Feng YT, Zalutsky MR (2021) Production, purification and availability of At-211: near term steps towards global access. Nucl Med Biol 100:12–23

    PubMed  Google Scholar 

  101. Henriksen G, Messelt S, Olsen E, Larsen RH (2001) Optimisation of cyclotron production parameters for the Bi-209(alpha, 2n) At-211 reaction related to biomedical use of At-211. Appl Radiat Isot 54:839–844

    CAS  PubMed  Google Scholar 

  102. Crawford JR, Yang H, Kunz P, Wilbur DS, Schaffer P, Ruth TJ (2017) Development of a preclinical Rn-211/At-211 generator system for targeted alpha therapy research with At-211. Nucl Med Biol 48:31–35

    CAS  PubMed  Google Scholar 

  103. Jimenez C, Chin BB, Noto RB et al (2020) Updated long-term survival and safety from a multi-center, open-label, pivotal phase 2 study of azedra (R) in patients with unresectable, locally advanced or metastatic pheochromocytoma or paraganglioma. J Urol 203:E632–E632

    Google Scholar 

  104. Pryma DA, Chin BB, Noto RB et al (2019) Efficacy and safety of high-specific-activity I-131-MIBG therapy in patients with advanced pheochromocytoma or paraganglioma. J Nucl Med 60:623–630

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rizzieri D (2016) Zevalin (R) (ibritumomab tiuxetan): after more than a decade of treatment experience, what have we learned? Crit Rev Oncol/Hematol 105:5–17

    PubMed  Google Scholar 

  106. Hennrich U, Kopka K (2019) Lutathera (R): The first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals 12:8

    Google Scholar 

  107. Keam SJ (2022) Lutetium Lu 177 vipivotide tetraxetan: first approval. Mol Diagn Ther 26(4):467–475

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Liepe K, Shinto A (2016) From palliative therapy to prolongation of survival: (RaCl2)-Ra-223 in the treatment of bone metastases. Ther Adv Med Oncol 8:294–304

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Parker C, Nilsson S, Heinrich D et al (2013) Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 369:213–223

    CAS  PubMed  Google Scholar 

  110. Parker CC, Coleman RE, Sartor O et al (2018) Three-year safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases from phase 3 randomized alpharadin in symptomatic prostate cancer trial. Eur Urol 73:427–435

    PubMed  Google Scholar 

  111. US National Library of Medicine (2014) Observational study for the evaluation of long-term safety of radium-223 used for the treatment of metastatic castration resistant prostate cancer (REASSURE) ClinicalTrials.gov https://beta.clinicaltrials.gov/study/NCT02141438. Accessed 29 Nov 2022

  112. Smith M, Parker C, Saad F et al (2019) Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20:408–419

    CAS  PubMed  Google Scholar 

  113. Agarwal N, Nussenzveig R, Hahn AW et al (2020) Prospective evaluation of bone metabolic markers as surrogate markers of response to radium-223 therapy in metastatic castration-resistant prostate cancer. Clin Cancer Res 26:2104–2110

    CAS  PubMed  PubMed Central  Google Scholar 

  114. US National Library of Medicine (2015) Phase III radium 223 mCRPC-PEACE III (PEACE III) ClinicalTrials.gov https://beta.clinicaltrials.gov/study/NCT02194842 (2015). Accessed 29 Nov 2022

  115. Ahmadzadehfar H, Zimbelmann S, Yordanova A et al (2017) Radioligand therapy of metastatic prostate cancer using Lu-177-PSMA-617 after radiation exposure to Ra-223-dichloride. Oncotarget 8:55567–55574

    PubMed  PubMed Central  Google Scholar 

  116. Sartor O, la Fougere C, Essler M et al (2022) Lu-177-prostate-specific membrane antigen ligand after Ra-223 treatment in men with bone-metastatic castration- resistant prostate cancer: real-world clinical experience. J Nucl Med 63:410–414

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hall EJ (2000) Radiobiology for the radiologist. 5 ed. Lippincott Williams & Wilkins, Philadelphia, USA

    Google Scholar 

  118. Desouky O, Ding N, Zhou G (2015) Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci 8:247–254

    CAS  Google Scholar 

  119. Jeggo P, Löbrich M (2006) Radiation-induced DNA damage responses. Radiat Prot Dosim 122:124–127

    Google Scholar 

  120. Asaithamby A, Hu B, Chen DJ (2011) Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc Natl Acad Sci U S A 108:8293–8298

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pouget JP, Frelon S, Ravanat JL, Testard I, Odin F, Cadet J (2002) Formation of modified DNA bases in cells exposed either to gamma radiation or to high-LET particles. Radiat Res 157:589–595

    CAS  PubMed  Google Scholar 

  122. Georgakilas AG, O’Neill P, Stewart RD (2013) Induction and repair of clustered DNA lesions: what do we know so far? Radiat Res 180:100–109

    CAS  PubMed  Google Scholar 

  123. Bukowska B, Karwowski BT (2018) The clustered DNA lesions - types, pathways of repair and relevance to human health. Curr Med Chem 25:2722–2735

    CAS  PubMed  Google Scholar 

  124. Nakano T, Akamatsu K, Tsuda M et al (2022) Formation of clustered DNA damage in vivo upon irradiation with ionizing radiation: visualization and analysis with atomic force microscopy. Proc Natl Acad Sci U S A 119:e2119132119

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Goodhead DT (1999) Mechanisms for the biological effectiveness of high-LET radiations. J Radiat Res 40(Suppl):1–13

    CAS  PubMed  Google Scholar 

  126. Semenenko VA, Stewart RD (2004) A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation. Radiat Res 161:451–457

    CAS  PubMed  Google Scholar 

  127. Gulston M, Fulford J, Jenner T, de Lara C, O’Neill P (2002) Clustered DNA damage induced by γ radiation in human fibroblasts (HF19), hamster (V79-4) cells and plasmid DNA is revealed as Fpg and Nth sensitive sites. Nucleic Acids Res 30:3464–3472

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Watanabe R, Rahmanian S, Nikjoo H (2015) Spectrum of radiation-induced clustered non-DSB damage – a Monte Carlo track structure modeling and calculations. Radiat Res 183:525–540

    CAS  PubMed  Google Scholar 

  129. Ebner DK, Kamada T (2016) The emerging role of carbon-ion radiotherapy. Front Oncol 6:140

    PubMed  PubMed Central  Google Scholar 

  130. Nikitaki Z, Velalopoulou A, Zanni V et al (2022) Key biological mechanisms involved in high-LET radiation therapies with a focus on DNA damage and repair. Expert Rev Mol Med 24:e15

  131. Antonovic L, Lindblom E, Dasu A, Bassler N, Furusawa Y, Toma-Dasu I (2014) Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes. J Radiat Res 55:902–911

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Dahle TJ, Rusten E, Stokkevåg CH et al (2020) The FLUKA Monte Carlo code coupled with an OER model for biologically weighted dose calculations in proton therapy of hypoxic tumors. Phys Med 76:166–172

    PubMed  Google Scholar 

  133. Strigari L, Torriani F, Manganaro L et al (2018) Tumour control in ion beam radiotherapy with different ions in the presence of hypoxia: an oxygen enhancement ratio model based on the microdosimetric kinetic model. Phys Med Biol 63:065012

    CAS  PubMed  Google Scholar 

  134. Hirayama R, Uzawa A, Takase N et al (2013) Evaluation of SCCVII tumor cell survival in clamped and non-clamped solid tumors exposed to carbon-ion beams in comparison to X-rays. Mutat Res 756:146–151

    CAS  PubMed  Google Scholar 

  135. Gorgoulis VG, Vassiliou LV, Karakaidos P et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913

    CAS  PubMed  Google Scholar 

  136. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8:193–204

    CAS  PubMed  Google Scholar 

  137. Campos A, Clemente-Blanco A (2020) Cell cycle and DNA repair regulation in the damage response: protein phosphatases take over the reins. Int J Mol Sci 21:446

  138. Pellegata NS, Antoniono RJ, Redpath JL, Stanbridge EJ (1996) DNA damage and p53-mediated cell cycle arrest: a reevaluation. Proc Natl Acad Sci U S A 93:15209–15214

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Price Brendan D, D’Andrea Alan D (2013) Chromatin remodeling at DNA double-strand breaks. Cell 152:1344–1354

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Shibata A (2017) Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutat Res 803-805:51–55

    CAS  PubMed  Google Scholar 

  141. Beucher A, Birraux J, Tchouandong L et al (2009) ATM and artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 28:3413–3427

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Isono M, Niimi A, Oike T et al (2017) BRCA1 directs the repair pathway to homologous recombination by promoting 53BP1 dephosphorylation. Cell Rep 18:520–532

    CAS  PubMed  Google Scholar 

  143. Scully R, Panday A, Elango R, Willis NA (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 20:698–714

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9:619–631

    CAS  PubMed  Google Scholar 

  145. Krokan HE, Bjørås M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5:a012583

    PubMed  PubMed Central  Google Scholar 

  146. Kusakabe M, Onishi Y, Tada H et al (2019) Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes Environ 41:2

    PubMed  PubMed Central  Google Scholar 

  147. Li G-M (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98

    CAS  PubMed  Google Scholar 

  148. Hu Y, Petit SA, Ficarro SB et al (2014) PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov 4:1430–1447

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lomax ME, Folkes LK, O’Neill P (2013) Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol) 25:578–585

    CAS  PubMed  Google Scholar 

  150. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    CAS  PubMed  Google Scholar 

  151. Goodhead DT, Thacker J, Cox R (1993) Weiss Lecture. Effects of radiations of different qualities on cells: molecular mechanisms of damage and repair. Int J Radiat Biol 63:543–556

    CAS  PubMed  Google Scholar 

  152. Dianov GL, O’Neill P, Goodhead DT (2001) Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. Bioessays 23:745–749

    CAS  PubMed  Google Scholar 

  153. Asaithamby A, Chen DJ (2011) Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutat Res 711:87–99

    CAS  PubMed  Google Scholar 

  154. Asaithamby A, Uematsu N, Chatterjee A, Story MD, Burma S, Chen DJ (2008) Repair of HZE-particle-induced DNA double-strand breaks in normal human fibroblasts. Radiat Res 169:437–446

    CAS  PubMed  Google Scholar 

  155. Kass EM, Jasin M (2010) Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett 584:3703–3708

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Shrivastav M, Haro LPD, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    CAS  PubMed  Google Scholar 

  157. You Z, Bailis JM (2010) DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol 20:402–409

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Bright SJ, Flint DB, Chakraborty S et al (2019) Nonhomologous end joining is more important than proton linear energy transfer in dictating cell death. Int J Radiat Oncol Biol Phys 105:1119–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Tamulevicius P, Wang M, Iliakis G (2007) Homology-directed repair is required for the development of radioresistance during S phase: interplay between double-strand break repair and checkpoint response. Radiat Res 167:1–11

    CAS  PubMed  Google Scholar 

  160. Groth P, Orta ML, Elvers I, Majumder MM, Lagerqvist A, Helleday T (2012) Homologous recombination repairs secondary replication induced DNA double-strand breaks after ionizing radiation. Nucleic Acids Res 40:6585–6594

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Harper JV, Anderson JA, O’Neill P (2010) Radiation induced DNA DSBs: contribution from stalled replication forks? DNA Repair (Amst) 9:907–913

    CAS  PubMed  Google Scholar 

  162. Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541

    PubMed  PubMed Central  Google Scholar 

  163. Szymonowicz K, Krysztofiak A, Linden JV et al (2020) Proton irradiation increases the necessity for homologous recombination repair along with the indispensability of non-homologous end joining. Cells 9:889

  164. Farmer H, McCabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    CAS  PubMed  Google Scholar 

  165. Roos WP, Kaina B (2013) DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 332:237–248

    CAS  PubMed  Google Scholar 

  166. Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17:395–417

    PubMed  PubMed Central  Google Scholar 

  167. Shen Y, White E (2001) p53-dependent apoptosis pathways. Adv Cancer Res 82:55–84

    CAS  PubMed  Google Scholar 

  168. Jänicke RU, Sohn D, Schulze-Osthoff K (2008) The dark side of a tumor suppressor: anti-apoptotic p53. Cell Death Differ 15:959–976

    PubMed  Google Scholar 

  169. Zhu G, Pan C, Bei J-X et al (2020) Mutant p53 in cancer progression and targeted therapies. Front Oncol 10:595187

  170. Weisz L, Oren M, Rotter V (2007) Transcription regulation by mutant p53. Oncogene 26:2202–2211

    CAS  PubMed  Google Scholar 

  171. Leonetti D, Estéphan H, Ripoche N et al (2020) Secretion of acid sphingomyelinase and ceramide by endothelial cells contributes to radiation-induced intestinal toxicity. Cancer Res 80:2651–2662

    CAS  PubMed  Google Scholar 

  172. Takahashi A, Matsumoto H, Yuki K et al (2004) High-LET radiation enhanced apoptosis but not necrosis regardless of p53 status. Int J Radiat Oncol Biol Phys 60:591–597

    PubMed  Google Scholar 

  173. Nakagawa T, Shimizu S, Watanabe T et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658

    CAS  PubMed  Google Scholar 

  174. Hu XM, Li ZX, Lin RH et al (2021) Guidelines for regulated cell death assays: a systematic summary, a categorical comparison, a prospective. Front Cell Dev Biol 9:634690

  175. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370:455–465

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Nehs MA, Lin CI, Kozono DE et al (2011) Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers. Surgery 150:1032–1039

    PubMed  Google Scholar 

  177. Lei G, Zhang Y, Koppula P et al (2020) The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res 30:146–162

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 22:381–396

  179. Lei G, Zhang Y, Hong T et al (2021) Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity. Oncogene 40:3533–3547

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Seymour CB, Mothersill C (1997) Delayed expression of lethal mutations and genomic instability in the progeny of human epithelial cells that survived in a bystander-killing environment. Radiat Oncol Investig 5:106–110

    CAS  PubMed  Google Scholar 

  181. Koturbash I, Loree J, Kutanzi K, Koganow C, Pogribny I, Kovalchuk O (2008) In vivo bystander effect: cranial X-irradiation leads to elevated DNA damage, altered cellular proliferation and apoptosis, and increased p53 levels in shielded spleen. Int J Radiat Oncol Biol Phys 70:554–562

    CAS  PubMed  Google Scholar 

  182. Lorimore SA, Coates PJ, Scobie GE, Milne G, Wright EG (2001) Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects? Oncogene 20:7085–7095

    CAS  PubMed  Google Scholar 

  183. Sedelnikova OA, Nakamura A, Kovalchuk O et al (2007) DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res 67:4295–4302

    CAS  PubMed  Google Scholar 

  184. Bright S, Kadhim M (2018) The future impacts of non-targeted effects. Int J Radiat Biol 94:727–736

    CAS  PubMed  Google Scholar 

  185. Limoli CL, Hartmann A, Shephard L et al (1998) Apoptosis, reproductive failure, and oxidative stress in Chinese hamster ovary cells with compromised genomic integrity. Cancer Res 58:3712–3718

    CAS  PubMed  Google Scholar 

  186. Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK (2000) Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proc Natl Acad Sci U S A 97:2099–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Poleszczuk J, Krzywon A, Forys U, Widel M (2015) Connecting radiation-induced bystander effects and senescence to improve radiation response prediction. Radiat Res 183:571–577

    CAS  PubMed  Google Scholar 

  188. Morgan WF (2003) Non-targeted and delayed effects of exposure to ionizing radiation: I. radiation-induced genomic instability and bystander effects in vitro. Radiat Res 159:567–580

    CAS  PubMed  Google Scholar 

  189. Huang L, Snyder AR, Morgan WF (2003) Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene 22:5848–5854

    CAS  PubMed  Google Scholar 

  190. Prise KM, O’Sullivan JM (2009) Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 9:351–360

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Al-Mayah A, Bright S, Chapman K et al (2015) The non-targeted effects of radiation are perpetuated by exosomes. Mutat Res 772:38–45

    CAS  PubMed  Google Scholar 

  192. Al-Mayah AH, Bright SJ, Bowler DA, Slijepcevic P, Goodwin E, Kadhim MA (2017) Exosome-mediated telomere instability in human breast epithelial cancer cells after X irradiation. Radiat Res 187:98–106

    CAS  PubMed  Google Scholar 

  193. Azzam EI, de Toledo SM, Little JB (2003) Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene 22:7050–7057

    CAS  PubMed  Google Scholar 

  194. Desai S, Kobayashi A, Konishi T, Oikawa M, Pandey BN (2014) Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation. Mutat Res 763-764:39–44

    CAS  PubMed  Google Scholar 

  195. Pouget JP, Georgakilas AG, Ravanat JL (2018) Targeted and off-target (bystander and abscopal) effects of radiation therapy: redox mechanisms and risk/benefit analysis. Antioxid Redox Signal 29:1447–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Sgouros G, Hobbs RF, Song H (2011) Modelling and dosimetry for alpha-particle therapy. Curr Radiopharm 4:261–265

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Paillas S, Ladjohounlou R, Lozza C et al (2016) Localized irradiation of cell membrane by Auger electrons is cytotoxic through oxidative stress-mediated nontargeted effects. Antioxid Redox Signal 25:467–484

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Karthik K, Rajan V, Pandey BN, Sivasubramanian K, Paul SFD, Venkatachalam P (2019) Direct and bystander effects in human blood lymphocytes exposed to (241)Am alpha particles and the relative biological effectiveness using chromosomal aberration and micronucleus assay. Int J Radiat Biol 95:725–736

    CAS  PubMed  Google Scholar 

  199. Boyd M, Ross SC, Dorrens J et al (2006) Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with α-, β-, and Auger electron–emitting radionuclides. J Nucl Med 47:1007–1015

    CAS  PubMed  Google Scholar 

  200. Constanzo J, Bouden Y, Godry L, Kotzki PO, Deshayes E, Pouget JP (2023) Chapter four - immunomodulatory effects of targeted radionuclide therapy. In: Mirjolet C, Galluzzi L (eds) International Review of Cell and Molecular Biology. Academic Press, pp 105–136

    Google Scholar 

  201. Hanot M, Hoarau J, Carrière M, Angulo JF, Khodja H (2009) Membrane-dependent bystander effect contributes to amplification of the response to alpha-particle irradiation in targeted and nontargeted cells. Int J Radiat Oncol Biol Phys 75:1247–1253

    CAS  PubMed  Google Scholar 

  202. Xue LY, Butler NJ, Makrigiorgos GM, Adelstein SJ, Kassis AI (2002) Bystander effect produced by radiolabeled tumor cells in vivo. Proc Natl Acad Sci U S A 99:13765–13770

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Brady D, O’Sullivan JM, Prise KM (2013) What is the role of the bystander response in radionuclide therapies? Front Oncol 3:215

    PubMed  PubMed Central  Google Scholar 

  204. Gow MD, Seymour CB, Byun SH, Mothersill CE (2008) Effect of dose rate on the radiation-induced bystander response. Phys Med Biol 53:119–132

    CAS  PubMed  Google Scholar 

  205. Mairs RJ, Fullerton NE, Zalutsky MR, Boyd M (2007) Targeted radiotherapy: microgray doses and the bystander effect. Dose-Response 5:204–213

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Pouget JP, Chan TA, Galluzzi L, Constanzo J (2023) Radiopharmaceuticals as combinatorial partners for immune checkpoint inhibitors. Trends Cancer. In press

  207. Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC (2018) Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 18:313–322

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Daguenet E, Louati S, Wozny A-S et al (2020) Radiation-induced bystander and abscopal effects: important lessons from preclinical models. Br J Cancer 123:339–348

    PubMed  PubMed Central  Google Scholar 

  209. Mole RH (1953) Whole body irradiation; radiobiology or medicine? Br J Radiol 26:234–241

    CAS  PubMed  Google Scholar 

  210. Vanpouille-Box C, Alard A, Aryankalayil MJ et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618

    PubMed  PubMed Central  Google Scholar 

  211. Formenti SC, Rudqvist NP, Golden E et al (2018) Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med 24:1845–1851

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1:365–372

    PubMed  PubMed Central  Google Scholar 

  213. McLaughlin M, Patin EC, Pedersen M et al (2020) Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat Rev Cancer 20:203–217

    CAS  PubMed  Google Scholar 

  214. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA (2017) Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548:466

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Mackenzie KJ, Carroll P, Martin C-A et al (2017) cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548:461

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Erdal E, Haider S, Rehwinkel J, Harris AL, McHugh PJ (2017) A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev 31:353–369

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Härtlova A, Erttmann SF, Raffi FAM et al (2015) DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42:332–343

    PubMed  Google Scholar 

  218. Bakhoum SF, Ngo B, Laughney AM et al (2018) Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553:467–472

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ (2013) Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341:1390–1394

    CAS  PubMed  Google Scholar 

  220. Bartsch K, Knittler K, Borowski C et al (2017) Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum Mol Genet 26:3960–3972

    CAS  PubMed  Google Scholar 

  221. Dou Z, Ghosh K, Vizioli MG et al (2017) Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550:402–406

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Deng L, Liang H, Xu M et al (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41:843–852

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Yang H, Wang H, Ren J, Chen Q, Chen ZJ (2017) cGAS is essential for cellular senescence. Proc Natl Acad Sci U S A 114:E4612–E4620

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Gluck S, Guey B, Gulen MF et al (2017) Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 19:1061–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Demaria O, De Gassart A, Coso S et al (2015) STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci U S A 112:15408–15413

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791

    CAS  PubMed  Google Scholar 

  227. Wu J, Sun L, Chen X et al (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–830

    CAS  PubMed  Google Scholar 

  228. Feng X, Tubbs A, Zhang C et al (2020) ATR inhibition potentiates ionizing radiation-induced interferon response via cytosolic nucleic acid-sensing pathways. EMBO J 39:e104036

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S (2019) Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 11:40

    PubMed  PubMed Central  Google Scholar 

  230. Hernandez C, Huebener P, Schwabe RF (2016) Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene 35:5931–5941

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Krombach J, Hennel R, Brix N et al (2019) Priming anti-tumor immunity by radiotherapy: dying tumor cell-derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology 8:e1523097

    PubMed  Google Scholar 

  232. Del Prete A, Salvi V, Soriani A et al (2023) Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol 20:432–447

    PubMed  PubMed Central  Google Scholar 

  233. Demuynck R, Efimova I, Naessens F, Krysko DV (2021) Immunogenic ferroptosis and where to find it? J Immunother Cancer 9:e003430

  234. Wiernicki B, Maschalidi S, Pinney J et al (2022) Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun 13:3676

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Arina A, Gutiontov SI, Weichselbaum RR (2020) Radiotherapy and Immunotherapy for cancer: from “systemic” to “multisite”. Clin Cancer Res 26:2777–2782

    CAS  PubMed  Google Scholar 

  236. Bellia SR, Feliciani G, Duca MD et al (2019) Clinical evidence of abscopal effect in cutaneous squamous cell carcinoma treated with diffusing alpha emitters radiation therapy: a case report. J Contemp Brachytherapy 11:449–457

    PubMed  PubMed Central  Google Scholar 

  237. Leung CN, Canter BS, Rajon D et al (2020) Dose-dependent growth delay of breast cancer xenografts in the bone marrow of mice treated with (223)Ra: the role of bystander effects and their potential for therapy. J Nucl Med 61:89–95

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Patel RB, Hernandez R, Carlson P et al (2021) Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Sci Transl Med 13:eabb3631

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Ertveldt T, De Beck L, De Ridder K et al (2022) Targeted radionuclide therapy with low and high-dose lutetium-177–labeled single domain antibodies induces distinct immune signatures in a mouse melanoma model. Mol Cancer Ther 21:1136–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Ogawa K, Takeda T, Mishiro K et al (2019) Radiotheranostics coupled between an At-211-labeled RGD peptide and the corresponding radioiodine-labeled RGD peptide. ACS Omega 4:4584–4591

    CAS  Google Scholar 

  241. Ogawa K, Echigo H, Mishiro K et al (2021) Ga-68- and At-211-labeled RGD peptides for radiotheranostics with multiradionuclides. Mol Pharm 18:3553–3562

    CAS  PubMed  Google Scholar 

  242. Srivastava M, Pollard HB (1999) Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J 13:1911–1922

    CAS  PubMed  Google Scholar 

  243. Drecoll E, Gaertner FC, Miederer M et al (2009) Treatment of peritoneal carcinomatosis by targeted delivery of the radio-labeled tumor homing peptide Bi-213-DTPA- F3 (2) into the nucleus of tumor cells. PLoS One 4:9

    Google Scholar 

  244. Essler M, Gartner FC, Neff F et al (2012) Therapeutic efficacy and toxicity of Ac-225-labelled vs. Bi-213-labelled tumour-homing peptides in a preclinical mouse model of peritoneal carcinomatosis. Eur J Nucl Med Mol Imaging 39:602–612

    CAS  PubMed  Google Scholar 

  245. Moreno P, Ramos-Alvarez I, Moody TW, Jensen RT (2016) Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets 20:1055–1073

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Wild D, Frischknecht M, Zhang HW et al (2011) Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (Bi-213-DOTA-PESIN and Bi-213-AMBA versus Lu-177-DOTA-PESIN). Cancer Res 71:1009–1018

    CAS  PubMed  Google Scholar 

  247. Aoki M, Zhao SJ, Takahashi K et al (2020) Preliminary evaluation of astatine-211-labeled bombesin derivatives for targeted alpha therapy. Chem Pharm Bull 68:538–545

    CAS  Google Scholar 

  248. Yao ZS, Garmestani K, Wong KJ et al (2001) Comparative cellular catabolism and retention of astatine-, bismuth-, and lead-radiolabeled internalizing monoclonal antibody. J Nucl Med 42:1538–1544

    CAS  PubMed  Google Scholar 

  249. Choi J, Vaidyanathan G, Koumarianou E, Kang CM, Zalutsky MR (2018) Astatine-211 labeled anti-HER2 5F7 single domain antibody fragment conjugates: radiolabeling and preliminary evaluation. Nucl Med Biol 56:10–20

    CAS  PubMed  Google Scholar 

  250. Pruszynski M, Koumarianou E, Vaidyanathan G et al (2014) Improved tumor targeting of anti-HER2 nanobody through N-succinimidyl 4-guanidinomethyl-3-Iodobenzoate radiolabeling. J Nucl Med 55:650–656

    CAS  PubMed  Google Scholar 

  251. Vaidyanathan G, Zalutsky MR (2007) Synthesis of N-succinimidyl 4-guanidinomethyl-3- *I iodobenzoate: a radio-iodination agent for labeling internalizing proteins and peptides. Nat Protoc 2:282–286

    CAS  PubMed  Google Scholar 

  252. Cortez A, Josefsson A, McCarty G et al (2020) Evaluation of Ac-225 Ac-DOTA-anti-VLA-4 for targeted alpha therapy of metastatic melanoma. Nucl Med Biol 88-89:62–72

    CAS  PubMed  Google Scholar 

  253. Kelly VJ, Wu ST, Gottumukkala V et al (2020) Preclinical evaluation of an In-111/Ac-225 theranostic targeting transformed MUC1 for triple negative breast cancer. Theranostics 10:6946–6958

    CAS  PubMed  PubMed Central  Google Scholar 

  254. US National Library of Medicine (2018) Study to evaluate the safety, tolerability, pharmacokinetics, and antitumor activity of a thorium-227 labeled antibody-chelator conjugate alone and in combination with darolutamide, in patients with metastatic castration resistant prostate cancer. ClinicalTrials.gov https://beta.clinicaltrials.gov/study/NCT03724747. Accessed 1 Nov 2022

  255. Hammer S, Hagemann UB, Zitzmann-Kolbe S et al (2020) Preclinical efficacy of a PSMA-targeted thorium-227 conjugate (PSMA-TTC), a targeted alpha therapy for prostate cancer. Clin Cancer Res 26:1985–1996

    CAS  PubMed  Google Scholar 

  256. Perner S, Hofer MD, Kim R et al (2007) Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol 38:696–701

    CAS  PubMed  Google Scholar 

  257. Hupe MC, Philippi C, Roth D et al (2018) Expression of prostate-specific membrane antigen (PSMA) on biopsies is an independent risk stratifier of prostate cancer patients at time of initial diagnosis. Front Oncol 8:7

    Google Scholar 

  258. Bravaccini S, Puccetti M, Bocchini M et al (2018) PSMA expression: a potential ally for the pathologist in prostate cancer diagnosis. Sci Rep 8:4254

    PubMed  PubMed Central  Google Scholar 

  259. Sweat SD, Pacelli A, Murphy GP, Bostwick DG (1998) Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52:637–640

    CAS  PubMed  Google Scholar 

  260. Wright GL, Grob BM, Haley C et al (1996) Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48:326–334

    PubMed  Google Scholar 

  261. Rosar F, Neher R, Burgard C et al (2022) Upregulation of PSMA expression by enzalutamide in patients with advanced mCRPC. Cancers 14:11

    Google Scholar 

  262. Roach PJ, Francis R, Emmett L et al (2018) The impact of Ga-68-PSMA PET/CT on management intent in prostate cancer: results of an Australian prospective multicenter study. J Nucl Med 59:82–88

    CAS  PubMed  Google Scholar 

  263. Afshar-Oromieh A, Holland-Letz T, Giesel FL et al (2017) Diagnostic performance of Ga-68-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging 44:1258–1268

    PubMed  PubMed Central  Google Scholar 

  264. Banerjee SR, Foss CA, Castanares M et al (2008) Synthesis and evaluation of technetium-99m-and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). J Med Chem 51:4504–4517

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Benesova M, Schafer M, Bauder-Wust U et al (2015) Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med 56:914–920

    CAS  PubMed  Google Scholar 

  266. Banerjee SR, Kumar V, Lisok A et al (2019) Lu-177-labeled low-molecular-weight agents for PSMA-targeted radiopharmaceutical therapy. Eur J Nucl Med Mol Imaging 46:2545–2557

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Sartor O, de Bono J, Chi KN et al (2021) Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med 385:1091–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Hofman MS, Violet J, Hicks RJ et al (2018) Lu-177 -PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 19:825–833

    CAS  PubMed  Google Scholar 

  269. Kratochwil C, Bruchertseifer F, Giesel FL et al (2016) 225Ac-PSMA-617 for PSMA-targeted a-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med 57:1941–1944

    CAS  PubMed  Google Scholar 

  270. Kratochwil C, Bruchertseifer F, Rathke H et al (2017) Targeted alpha-therapy of metastatic castration-resistant prostate cancer with Ac-225-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med 58:1624–1631

    CAS  PubMed  Google Scholar 

  271. Sathekge M, Bruchertseifer F, Knoesen O et al (2019) Ac-225-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study (vol 46, pg 129, 2019). Eur J Nucl Med Mol Imaging 46:1988–1988

    PubMed  PubMed Central  Google Scholar 

  272. Sathekge M, Bruchertseifer F, Knoesen O et al (2019) Ac-225-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging 46:129–138

    CAS  PubMed  Google Scholar 

  273. Sathekge M, Bruchertseifer F, Vorster M et al (2020) Predictors of overall and disease-free survival in metastatic castration-resistant prostate cancer patients receiving Ac-225-PSMA-617 radioligand therapy. J Nucl Med 61:62–69

    CAS  PubMed  Google Scholar 

  274. Feuerecker B, Tauber R, Knorr K et al (2021) Activity and adverse events of actinium-225-PSMA-617 in advanced metastatic castration-resistant prostate cancer after failure of lutetium-177-PSMA. Eur Urol 79:343–350

    CAS  PubMed  Google Scholar 

  275. Sathekge M, Knoesen O, Meckel M, Modiselle M, Vorster M, Marx S (2017) Bi-213-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 44:1099–1100

    PubMed  PubMed Central  Google Scholar 

  276. Kratochwil C, Schmidt K, Afshar-Oromieh A et al (2018) Targeted alpha therapy of mCRPC: dosimetry estimate of (213)bismuth-PSMA-617. Eur J Nucl Med Mol Imaging 45:31–37

    CAS  PubMed  Google Scholar 

  277. Umbricht CA, Koster U, Bernhardt P et al (2019) Alpha-PET for prostate cancer: preclinical investigation using Tb-149-PSMA-617. Sci Rep 9:10

    Google Scholar 

  278. Ruigrok EAM, Tamborino G, de Blois E et al (2022) In vitro dose effect relationships of actinium-225- and lutetium-177-labeled PSMA-I&T. Eur J Nucl Med Mol Imaging 11:3627–3638

  279. Nonnekens J, Chatalic KLS, Molkenboer-Kuenen JDM et al (2017) Bi-213-labeled prostate-specific membrane antigen-targeting agents induce DNA double-strand breaks in prostate cancer xenografts. Cancer Biother Radiopharm 32:67–73

    CAS  PubMed  Google Scholar 

  280. Zacherl MJ, Gildehaus FJ, Mittlmeier L et al (2021) First clinical results for PSMA-targeted alpha-therapy using Ac-225-PSMA-I&T in advanced-mCRPC patients. J Nucl Med 62:669–674

    CAS  PubMed  Google Scholar 

  281. Hooijman EL, Chalashkan Y, Ling SW et al (2021) Development of Ac-225 Ac-PSMA-I&T for targeted alpha therapy according to GMP guidelines for treatment of mCRPC. Pharmaceutics 13:15

    Google Scholar 

  282. dos Santos JC, Schafer M, Bauder-Wust U et al (2019) Development and dosimetry of Pb-203/Pb-212-labelled PSMA ligands: bringing "the lead" into PSMA-targeted alpha therapy? Eur J Nucl Med Mol Imaging 46:1081–1091

    PubMed  PubMed Central  Google Scholar 

  283. Heynickx N, Herrmann K, Vermeulen K, Baatout S, Aerts A (2021) The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: a review of the lessons learnt so far. Nucl Med Biol 98-99:30–39

    CAS  PubMed  Google Scholar 

  284. Lucaroni L, Georgiev T, Prodi E et al (2023) Cross-reactivity to glutamate carboxypeptidase III causes undesired salivary gland and kidney uptake of PSMA-targeted small-molecule radionuclide therapeutics. Eur J Nucl Med Mol Imaging 50:957–961

    CAS  PubMed  Google Scholar 

  285. Wollenweber T, Zisser L, Kretschmer-Chott E et al (2021) Renal and salivary gland functions after three cycles of PSMA-617 therapy every four weeks in patients with metastatic castration-resistant prostate cancer. Curr Oncol 28:3692–3704

    PubMed  PubMed Central  Google Scholar 

  286. Stenberg VY, Juzeniene A, Chen QQ, Yang XM, Bruland OS, Larsen RH (2020) Preparation of the alpha-emitting prostate-specific membrane antigen targeted radioligand Pb-212 Pb-NG001 for prostate cancer. J Label Compd Radiopharm 63:129–143

    CAS  Google Scholar 

  287. Mease RC, Kang CM, Kumar V et al (2022) An improved At-211-labeled agent for PSMA-targeted alpha-therapy. J Nucl Med 63:259–267

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Wang ML, Wu WZ, Wu WQ et al (2006) PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34:6170–6182

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Audebert M, Salles B, Weinfeld M, Calsou P (2006) Involvement of polynucleotide kinase in a poly(ADP-ribose) polymerase-1-dependent DNA double-strand breaks rejoining pathway. J Mol Biol 356:257–265

    CAS  PubMed  Google Scholar 

  290. Audebert M, Salles B, Calsou P (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279:55117–55126

    CAS  PubMed  Google Scholar 

  291. Wahlberg E, Karlberg T, Kouznetsova E et al (2012) Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol 30:283

    CAS  PubMed  Google Scholar 

  292. Makvandi M, Lee H, Puentes LN et al (2019) Targeting PARP-1 with alpha-particles is potently cytotoxic to human neuroblastoma in preclinical models. Mol Cancer Ther 18:1195–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Makvandi M, Xu KY, Lieberman BP et al (2016) A radiotracer strategy to quantify PARP-1 expression in vivo provides a biomarker that can enable patient selection for PARP inhibitor therapy. Cancer Res 76:4516–4524

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Lee H, Riad A, Martorano P et al (2020) PARP-1-targeted Auger emitters display high-LET cytotoxic properties in vitro but show limited therapeutic utility in solid tumor models of human neuroblastoma. J Nucl Med 61:850–856

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Patel KR, Martinez A, Stahl JM et al (2018) Increase in PD-L1 expression after pre-operative radiotherapy for soft tissue sarcoma. OncoImmunology 7:6

    Google Scholar 

  296. Wang Y, Kim TH, Fouladdel S et al (2019) PD-L1 Expression in circulating tumor cells increases during radio(chemo)therapy and indicates poor prognosis in non-small cell lung cancer. Sci Rep 9:9

    Google Scholar 

  297. Wu CT, Chen WC, Chang YH, Lin WY, Chen MF (2016) The role of PD-L1 in the radiation response and clinical outcome for bladder cancer. Sci Rep 6:9

    Google Scholar 

  298. Sato H, Niimi A, Yasuhara T et al (2017) DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun 8:11

    Google Scholar 

  299. Permata TBM, Sato H, Gu WC et al (2021) High linear energy transfer carbon-ion irradiation upregulates PD-L1 expression more significantly than X-rays in human osteosarcoma U2OS cells. J Radiat Res 62:773–781

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74:665–674

    CAS  PubMed  Google Scholar 

  301. Noman MZ, Desantis G, Janji B et al (2014) PD-L1 is a novel direct target of HIF-1 alpha., and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211:781–790

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Robert C, Ribas A, Schachter J et al (2019) Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol 20:1239–1251

    CAS  PubMed  Google Scholar 

  303. Nedrow JR, Josefsson A, Park S et al (2017) Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model. EJNMMI Res 7:16

    Google Scholar 

  304. Capitao M, Perrin J, Simon S et al (2021) Anti-tumor efficacy of PD-L1 targeted alpha-particle therapy in a human melanoma xenograft model. Cancers 13:15

    Google Scholar 

  305. Inoue M, Koga F, Yoshida S et al (2014) Significance of ERBB2 overexpression in therapeutic resistance and cancer-specific survival in muscle-invasive bladder cancer patients treated with chemoradiation-based selective bladder-sparing approach. Int J Radiat Oncol Biol Phys 90:303–311

    CAS  PubMed  Google Scholar 

  306. Koga F, Yoshida S, Tatokoro M et al (2011) ErbB2 and NF kappa B overexpression as predictors of chemoradiation resistance and putative targets to overcome resistance in muscle-invasive bladder cancer. PLoS One 6:5

    Google Scholar 

  307. Houston SJ, Plunkett TA, Barnes DM, Smith P, Rubens RD, Miles DW (1999) Overexpression of c-erbB2 is an independent marker of resistance to endocrine therapy in advanced breast cancer. Br J Cancer 79:1220–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Burke HB, Hoang A, Iglehart JD, Marks JR (1998) Predicting response to adjuvant and radiation therapy in patients with early stage breast carcinoma. Cancer 82:874–877

    CAS  PubMed  Google Scholar 

  309. Pirollo KF, Hao ZM, Rait A, Ho CW, Chang EH (1997) Evidence supporting a signal transduction pathway leading to the radiation-resistant phenotype in human tumor cells. Biochem Biophys Res Commun 230:196–201

    CAS  PubMed  Google Scholar 

  310. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Kehlbach R, Rodemann HP (2010) Nuclear EGFR shuttling induced by ionizing radiation is regulated by phosphorylation at residue Thr654. FEBS Lett 584:3878–3884

    CAS  PubMed  Google Scholar 

  311. Bandyopadhyay D, Mandal M, Adam L, Mendelsohn J, Kumar R (1998) Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J Biol Chem 273:1568–1573

    CAS  PubMed  Google Scholar 

  312. Dittmann K, Mayer C, Fehrenbacher B et al (2005) Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 280:31182–31189

    CAS  PubMed  Google Scholar 

  313. Guo GZ, Wang TL, Gao Q et al (2004) Expression of ErbB2 enhances radiation-induced NF-kappa B activation. Oncogene 23:535–545

    CAS  PubMed  Google Scholar 

  314. Cao N, Li SY, Wang ZQ et al (2009) NF-kappa B-mediated HER2 overexpression in radiation-adaptive resistance. Radiat Res 171:9–21

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Franovic A, Gunaratnam L, Smith K, Robert I, Patten D, Lee S (2007) Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc Natl Acad Sci U S A 104:13092–13097

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Wulbrand C, Seidl C, Gaertner FC et al (2013) Alpha-particle emitting Bi-213-anti-EGFR immunoconjugates eradicate tumor cells independent of oxygenation. PLoS One 8:9

    Google Scholar 

  317. Song H, Hedayati M, Hobbs RF et al (2013) Targeting aberrant DNA double-strand break repair in triple-negative breast cancer with alpha-particle emitter radiolabeled anti-EGFR antibody. Mol Cancer Ther 12:2043–2054

    CAS  PubMed  PubMed Central  Google Scholar 

  318. Pickhard A, Piontek G, Seidl C et al (2014) Bi-213-anti-EGFR radioimmunoconjugates and X-ray irradiation trigger different cell death pathways in squamous cell carcinoma cells. Nucl Med Biol 41:68–76

    CAS  PubMed  Google Scholar 

  319. Autenrieth ME, Seidl C, Bruchertseifer F et al (2018) Treatment of carcinoma in situ of the urinary bladder with an alpha-emitter immunoconjugate targeting the epidermal growth factor receptor: a pilot study. Eur J Nucl Med Mol Imaging 45:1364–1371

    CAS  PubMed  Google Scholar 

  320. Zhang DY, Li Y, Rizvi SMA, Qu CF, Kearsley J, Allen BJ (2005) Cytotoxicity of breast cancer cells overexpressing HER2/neu by Bi-213-Herceptin radioimmunoconjugate. Cancer Lett 218:181–190

    CAS  PubMed  Google Scholar 

  321. Vaneycken I, Devoogdt N, Van Gassen N et al (2011) Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J 25:2433–2446

    CAS  PubMed  Google Scholar 

  322. Pruszynski M, D’Huyvetter M, Bruchertseifer F, Morgenstern A, Lahoutte T (2018) Evaluation of an anti-HER2 nanobody labeled with 225AC for targeted alpha-particle therapy of cancer. Mol Pharm 15:1457–1466

    CAS  PubMed  Google Scholar 

  323. Dekempeneer Y, Back T, Aneheim E et al (2019) Labeling of Anti-HER2 nanobodies with astatine-211: optimization and the effect of different coupling reagents on their in vivo behavior. Mol Pharm 16:3524–3533

    CAS  PubMed  Google Scholar 

  324. Dekempeneer Y, Caveliers V, Ooms M et al (2020) Therapeutic efficacy of Bi-213-labeled sdAbs in a preclinical model of ovarian cancer. Mol Pharm 17:3553–3566

    CAS  PubMed  Google Scholar 

  325. Kratochwil C, Bruchertseifer F, Rathke H et al (2018) Targeted alpha-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617:swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med 59:795–802

    CAS  PubMed  Google Scholar 

  326. Heck MM, Retz M, D’Alessandria C et al (2016) Systemic radioligand therapy with Lu-177 labeled prostate specific membrane antigen ligand for imaging and therapy in patients with metastatic castration resistant prostate cancer. J Urol 196:382–390

    CAS  PubMed  Google Scholar 

  327. Rahbar K, Schmidt M, Heinzel A et al (2016) Response and tolerability of a single dose of Lu-177-PSMA-617 in patients with metastatic castration-resistant prostate cancer: a multicenter retrospective analysis. J Nucl Med 57:1334–1338

    CAS  PubMed  Google Scholar 

  328. Afshar-Oromieh A, Haberkorn U, Zechmann C et al (2017) Repeated PSMA-targeting radioligand therapy of metastatic prostate cancer with I-131-MIP-1095. Eur J Nucl Med Mol Imaging 44:950–959

    CAS  PubMed  PubMed Central  Google Scholar 

  329. Zechmann CM, Afshar-Oromieh A, Armor T et al (2014) Radiation dosimetry and first therapy results with a I-124/I-131-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging 41:1280–1292

    CAS  PubMed  PubMed Central  Google Scholar 

  330. Felber VB, Valentin MA, Wester HJ (2021) Design of PSMA ligands with modifications at the inhibitor part: an approach to reduce the salivary gland uptake of radiolabeled PSMA inhibitors? EJNMMI Radiopharm Chem 6:24

    Google Scholar 

  331. Khreish F, Ebert N, Ries M et al (2020) Ac-225-PSMA-617/Lu-177-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: pilot experience. Eur J Nucl Med Mol Imaging 47:721–728

    CAS  PubMed  Google Scholar 

  332. Watabe T, Liu Y, Kaneda-Nakashima K et al (2020) Theranostics targeting fibroblast activation protein in the tumor stroma: (64)Cu- and (225)Ac-labeled FAPI-04 in pancreatic cancer xenograft mouse models. J Nucl Med 61:563–569

    CAS  PubMed  PubMed Central  Google Scholar 

  333. Li D, Minnix M, Allen R et al (2021) Preclinical PET imaging of NTSR-1-positive tumors with (64)Cu- and (68)Ga-DOTA-neurotensin analogs and therapy with an (225)Ac-DOTA-neurotensin analog. Cancer Biother Radiopharm 36:651–661

    CAS  PubMed  PubMed Central  Google Scholar 

  334. Sathekge M, Bruchertseifer F, Knoesen O et al (2019) (225)Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging 46:129–138

    CAS  PubMed  Google Scholar 

  335. Solomon VR, Barreto K, Bernhard W et al (2020) Nimotuzumab site-specifically labeled with (89)Zr and (225)Ac using SpyTag/SpyCatcher for PET imaging and alpha particle radioimmunotherapy of epidermal growth factor receptor positive cancers. Cancers (Basel) 12:3449

  336. Aluicio-Sarduy E, Barnhart TE, Weichert J, Hernandez R, Engle JW (2021) Cyclotron-produced (132)La as a PET imaging surrogate for therapeutic (225)Ac. J Nucl Med 62:1012–1015

    CAS  PubMed  Google Scholar 

  337. Nelson BJB, Ferguson S, Wuest M et al (2022) First in vivo and phantom imaging of cyclotron-produced (133)La as a theranostic radionuclide for (225)Ac and (135)La. J Nucl Med 63:584–590

    CAS  PubMed  PubMed Central  Google Scholar 

  338. Bailey TA, Mocko V, Shield KM et al (2021) Developing the (134)Ce and (134)La pair as companion positron emission tomography diagnostic isotopes for (225)Ac and (227)Th radiotherapeutics. Nat Chem 13:284–289

    CAS  PubMed  Google Scholar 

  339. Bailey TA, Wacker JN, An DD et al (2022) Evaluation of (134)Ce as a PET imaging surrogate for antibody drug conjugates incorporating (225)Ac. Nucl Med Biol 110-111:28–36

    CAS  PubMed  Google Scholar 

  340. Severin GW, Fonslet J, Kristensen LK et al (2022) PET in vivo generators (134)Ce and (140)Nd on an internalizing monoclonal antibody probe. Sci Rep 12:3863

    CAS  PubMed  PubMed Central  Google Scholar 

  341. Rensch C, Jackson A, Lindner S et al (2013) Microfluidics: a groundbreaking technology for PET tracer production? Molecules 18:7930–7956

    CAS  PubMed  PubMed Central  Google Scholar 

  342. Pascali G, Watts P, Salvadori PA (2013) Microfluidics in radiopharmaceutical chemistry. Nucl Med Biol 40:776–787

    CAS  PubMed  Google Scholar 

  343. Wang J, Chao PH, van Dam RM (2019) Ultra-compact, automated microdroplet radiosynthesizer. Lab Chip 19:2415–2424

    CAS  PubMed  PubMed Central  Google Scholar 

  344. Wang J, Chao PH, Slavik R, van Dam RM (2020) Multi-GBq production of the radiotracer F-18 fallypride in a droplet microreactor. RSC Adv 10:7828–7838

    CAS  PubMed  PubMed Central  Google Scholar 

  345. Elkawad H, Xu YY, Tian M et al (2022) Recent advances in microfluidic devices for the radiosynthesis of PET-imaging probes. Chem-Asian J 17:13

    Google Scholar 

  346. Knapp KA, Nickels ML, Manning HC (2020) The current role of microfluidics in radiofluorination chemistry. Mol Imaging Biol 22:463–475

    PubMed  Google Scholar 

  347. Lebedev A, Miraghaie R, Kotta K et al (2013) Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer. Lab Chip 13:136–145

    CAS  PubMed  Google Scholar 

  348. Zhang X, Liu F, Payne AC, Nickels ML, Bellan LM, Manning HC (2020) High-yielding radiosynthesis of Ga-68 Ga-PSMA-11 using a low-cost microfluidic device. Mol Imaging Biol 22:1370–1379

    CAS  PubMed  Google Scholar 

  349. Mallapura H, Tanguy L, Langstrom B, Le Meunier L, Halldin C, Nag S (2022) Production of C-11 carbon labelled flumazenil and L-deprenyl using the iMiDEV (TM) automated microfluidic radiosynthesizer. Molecules 27:14

    Google Scholar 

  350. Earley DF, Guillou A, van der Born D, Poot AJ, Holland JP (2021) Microfluidic preparation of Zr-89-radiolabelled proteins by flow photochemistry. Molecules 26:12

    Google Scholar 

  351. Wright BD, Whittenberg J, Desai A et al (2016) Microfluidic preparation of a Zr-89-labeled trastuzumab single-patient dose. J Nucl Med 57:747–752

    CAS  PubMed  Google Scholar 

  352. Liu Z, Schaap KS, Ballemans L et al (2017) Measurement of reaction kinetics of Lu-177 Lu-DOTA-TATE using a microfluidic system. Dalton Trans 46:14669–14676

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.C.M. is a CPRIT Scholar of Cancer Research. The authors also thank Kelly Kage of the University of Texas MD Anderson Cancer Center Division of Diagnostic Imaging for providing the illustration used in Fig. 1 and Christine F. Wogan of the University of Texas MD Anderson Cancer Center Division of Radiation Oncology for editing the manuscript.

Funding

R.P.C., D.K.G., and H.C.M. acknowledge the Cancer Prevention and Research Institute of Texas (CPRIT) for financial support. G.O.S. and S.J.B. acknowledge the University of Texas MD Anderson Cancer Center, Division of Radiation Oncology for financial support. S.J.B. acknowledges the American Association of Physicists in Medicine for financial support. G.O.S. acknowledges the National Institutes of Health, Department of Defense, Alpha Tau Medical, Artios Pharma, and Convergent Radiotherapy and Radiosurgery (CRnR) for financial support. This work was also supported in part by Cancer Center Support (Core) Grant P30 from the National Cancer Institute, National Institutes of Health to The University of Texas MD Anderson Cancer Center (PI: PW Pisters).

Author information

Authors and Affiliations

Authors

Contributions

R.P.C., S.J.B., D.K.J.M., A.S.C., D.K.G., G.O.S., and H.C.M. contributed to the design, background research, and writing of this manuscript.

Corresponding author

Correspondence to H. Charles Manning.

Ethics declarations

Competing Interests

G.O.S. has research agreements with Alpha Tau Medical, Artios Pharma and Convergent Radiotherapy and Radiosurgery.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coll, R.P., Bright, S.J., Martinus, D.K. et al. Alpha Particle–Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 25, 991–1019 (2023). https://doi.org/10.1007/s11307-023-01857-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-023-01857-y

Keywords

Navigation