Skip to main content

Advertisement

Log in

In Vivo Electron Paramagnetic Resonance Molecular Profiling of Tumor Microenvironment upon Tumor Progression to Malignancy in an Animal Model of Breast Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Hypoxia and acidosis are recognized tumor microenvironment (TME) biomarkers of cancer progression. Alterations in cancer redox status and metabolism are also associated with elevated levels of intracellular glutathione (GSH) and interstitial inorganic phosphate (Pi). This study aims to evaluate the capability of these biomarkers to discriminate between stages and inform on a switch to malignancy.

Procedures

These studies were performed using MMTV-PyMT( +) female transgenic mice that spontaneously develop breast cancer and emulate human tumor staging. In vivo assessment of oxygen concentration (pO2), extracellular acidity (pHe), Pi, and GSH was performed using L-band electron paramagnetic resonance spectroscopy and multifunctional trityl and GSH-sensitive nitroxide probes.

Results

Profiling of the TME showed significant deviation of measured biomarkers upon tumor progression from pre-malignancy (pre-S4) to the malignant stage (S4). For the combined marker, HOP: (pHe × pO2)/Pi, a value > 186 indicated that the tumors were pre-malignant in 85% of the mammary glands analyzed, and when < 186, they were malignant 42% of the time. For GSH, a value < 3 mM indicated that the tumors were pre-malignant 74% of the time, and when > 3 mM, they were malignant 80% of the time. The only marker that markedly deviated as early as stage 1 (S1) from its value in pre-S1 was elevated Pi, followed by a decrease of pHe and pO2 and increase in GSH at later stages.

Conclusion

Molecular TME profiling informs on alteration of tumor redox and metabolism during tumor staging. Early elevation of interstitial Pi at S1 may reflect tumor metabolic alterations that demand elevated phosphorus supply in accordance with the high rate growth hypothesis. These metabolic changes are supported by the following decrease of pHe due to a high tumor reliance on glycolysis and increase of intracellular GSH, a major intracellular redox buffer. The appreciable decrease in TME pO2 was observed only at malignant S4, apparently as a consequence of tumor mass growth and corresponding decrease in perfusion efficacy and increase in oxygen consumption as the tumor cells proliferate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from reference [15] with permission of Nature Publishing Group.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siemann DW (2011) Tumor microenvironment. John Wiley & Sons, Ltd., Chichester, UK; Hoboken, NJ, USA, p 436

    Google Scholar 

  2. Tatum JL, Kelloff GJ, Gillies RJ et al (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82(10):699–757

    Article  CAS  PubMed  Google Scholar 

  3. Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19(2):223–229

    Article  CAS  PubMed  Google Scholar 

  4. Haulica A, Ababei L (1974) Comparative study of glycolytic activity in the erythrocytes of animals with chronic experimental hypoxia and with tumours. Neoplasma 21(1):29–35

    CAS  PubMed  Google Scholar 

  5. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314. https://doi.org/10.1126/science.123.3191.309

    Article  CAS  PubMed  Google Scholar 

  6. Matsumoto K, Hyodo F, Matsumoto A et al (2006) High-resolution mapping of tumor redox status by magnetic resonance imaging using nitroxides as redox-sensitive contrast agents. Clin Cancer Res 12(8):2455–2462

    Article  CAS  PubMed  Google Scholar 

  7. Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43(2):143–181

    Article  CAS  PubMed  Google Scholar 

  8. Voegtlin C, Thompson JW (1926) Glutathione content of tumor animals. J Biol Chem 70:801–806

    Article  CAS  Google Scholar 

  9. Huang Z, Komninou D, Kleinman W et al (2007) Enhanced levels of glutathione and protein glutathiolation in rat tongue epithelium during 4-NQO-induced carcinogenesis. Int J Cancer 120(7):1396–1401

    Article  CAS  PubMed  Google Scholar 

  10. Bobko AA, Eubank TD, Voorhees JL et al (2012) In vivo monitoring of pH, redox status, and glutathione using L-band EPR for assessment of therapeutic effectiveness in solid tumors. Magn Reson Med 67:1827–1836

    Article  CAS  PubMed  Google Scholar 

  11. Traverso N, Ricciarelli R, Nitti M et al (2013) Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev 2013:972913

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chang SH, Yu KN, Lee YS et al (2006) Elevated inorganic phosphate stimulates Akt-ERK1/2-Mnk1 signaling in human lung cells. Am J Respir Cell Mol Biol 35(5):528–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spina A, Sapio L, Esposito A et al (2013) Inorganic phosphate as a novel signaling molecule with antiproliferative action in MDA-MB-231 breast cancer cells. Biores Open Access 2(1):47–54. https://doi.org/10.1089/biores.2012.0266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khoshniat S, Bourgine A, Julien M et al (2011) The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci 68(2):205–218

    Article  CAS  PubMed  Google Scholar 

  15. Bobko AA, Eubank TD, Driesschaert B et al (2017) Interstitial inorganic phosphate as a tumor microenvironment marker for tumor progression. Sci Rep 7:41233. https://doi.org/10.1038/srep41233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lacerda-Abreu MA, Meyer-Fernandes JR (2023) Inorganic phosphate (Pi) in the breast cancer microenvironment: production, transport and signal transduction as potential targets for anticancer strategies. Curr Cancer Drug Tar 23(3):187–198. https://doi.org/10.2174/1568009622666220928140702

    Article  CAS  Google Scholar 

  17. Baudelet C, Gallez B (2002) How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med 48(6):980–986. https://doi.org/10.1002/mrm.10318

    Article  PubMed  Google Scholar 

  18. Colliez F, Safronova MM, Magat J et al (2015) Oxygen mapping within healthy and acutely infarcted brain tissue in humans using the NMR relaxation of lipids: A Proof-Of-Concept Translational Study. PLoS One 10(8):e0135248. https://doi.org/10.1371/journal.pone.0135248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ojugo AS, McSheehy PM, McIntyre DJ et al (1999) Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous (19)F and (31)P probes. NMR Biomed 12(8):495–504

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Lin Y, Gillies RJ (2010) Tumor pH and its measurement. J Nucl Med 51(8):1167–1170. https://doi.org/10.2967/jnumed.109.068981

    Article  CAS  PubMed  Google Scholar 

  21. Frenzel T, Kossler S, Bauer H et al (1994) Noninvasive in vivo pH measurements using a fluorinated pH probe and fluorine-19 magnetic resonance spectroscopy. Invest Radiol 29(Suppl 2):S220-222

    Article  CAS  PubMed  Google Scholar 

  22. Aoki Y, Akagi K, Tanaka Y et al (1996) Measurement of intratumor pH by pH indicator used in 19F-magnetic resonance spectroscopy Measurement of extracellular pH decrease caused by hyperthermia combined with hydralazine. Invest Radiol 31(11):680–689

    Article  CAS  PubMed  Google Scholar 

  23. Longo DL, Bartoli A, Consolino L et al (2016) In vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Res 76(22):6463–6470. https://doi.org/10.1158/0008-5472.CAN-16-0825

    Article  CAS  PubMed  Google Scholar 

  24. Sheth VR, Li Y, Chen LQ et al (2012) Measuring in vivo tumor pHe with CEST-FISP MRI. Magn Reson Med 67(3):760–768. https://doi.org/10.1002/mrm.23038

    Article  PubMed  Google Scholar 

  25. Martinez GV, Zhang X, Garcia-Martin ML et al (2011) Imaging the extracellular pH of tumors by MRI after injection of a single cocktail of T1 and T2 contrast agents. NMR Biomed 24(10):1380–1391. https://doi.org/10.1002/nbm.1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gallagher FA, Kettunen MI, Day SE et al (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453(7197):940–943. https://doi.org/10.1038/nature07017

    Article  CAS  PubMed  Google Scholar 

  27. Duwel S, Hundshammer C, Gersch M et al (2017) Imaging of pH in vivo using hyperpolarized (13)C-labelled zymonic acid. Nat Commun 8:15126. https://doi.org/10.1038/ncomms15126

    Article  PubMed  PubMed Central  Google Scholar 

  28. Livesey JC, Golden RN, Shankland EG et al (1992) Magnetic-resonance spectroscopic measurement of cellular thiol reduction-oxidation state. Int J Radiat Oncol 22(4):755–757

    Article  CAS  Google Scholar 

  29. Terpstra M, Henry PG, Gruetter R (2003) Measurement of reduced glutathione (GSH) in human brain using LCmodel analysis of difference-edited spectra. Magnet Reson Med 50(1):19–23. https://doi.org/10.1002/mrm.10499

    Article  CAS  Google Scholar 

  30. Willis JA, Schleich T (1995) C-13-Nmr spectroscopic studies of 2-mercaptoethanol-stimulated glutathione synthesis in the intact ocular lens. BBA-Mol Cell Res 1265(1):1–7. https://doi.org/10.1016/0167-4889(94)00195-K

    Article  Google Scholar 

  31. Trabesinger AH, Weber OM, Duc CO et al (1999) Detection of glutathione in the human brain in vivo by means of double quantum coherence filtering. Magnet Reson Med 42(2):283–289

    Article  CAS  Google Scholar 

  32. Choi C, Zhao C, Dimitrov I et al (2009) Measurement of glutathione in human brain at 3T using an improved double quantum filter in vivo. J Magn Reson 198(2):160–166. https://doi.org/10.1016/j.jmr.2009.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gillies RJ, Raghunand N, Garcia-Martin ML et al (2004) pH imaging A review of pH measurement methods and applications in cancers. IEEE Eng Med Biol Mag 23(5):57–64

    Article  PubMed  Google Scholar 

  34. Gade TP, Buchanan IM, Motley MW et al (2009) Imaging intratumoral convection: pressure-dependent enhancement in chemotherapeutic delivery to solid tumors. Clin Cancer Res 15(1):247–255. https://doi.org/10.1158/1078-0432.CCR-08-0611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khramtsov VV, Bobko AA, Tseytlin M et al (2017) Exchange phenomena in the electron paramagnetic resonance spectra of the nitroxyl and trityl radicals: multifunctional spectroscopy and imaging of local chemical microenvironment. Anal Chem 89(9):4758–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bobko AA, Eubank TD, Driesschaert B et al (2018) In vivo EPR assessment of pH, pO(2), redox status, and concentrations of phosphate and glutathione in the tumor microenvironment. J Vis Exp 133:e56624. https://doi.org/10.3791/56624

  37. Golman K, Petersson JS, Ardenkjaer-Larsen JH et al (2000) Dynamic in vivo oxymetry using overhauser enhanced MR imaging. J Magn Reson Imaging 12:929–938

    Article  CAS  PubMed  Google Scholar 

  38. Ardenkjaer-Larsen JH, Laursen I, Leunbach I et al (1998) EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging. J Magn Reson 133(1):1–12

    Article  CAS  PubMed  Google Scholar 

  39. Elas M, Williams BB, Parasca A et al (2003) Quantitative tumor oxymetric images from 4D electron paramagnetic resonance imaging (EPRI): methodology and comparison with blood oxygen level-dependent (BOLD) MRI. Magn Reson Med 49(4):682–691

    Article  PubMed  Google Scholar 

  40. Krishna MC, English S, Yamada K et al (2002) Overhauser enhanced magnetic resonance imaging for tumor oximetry: coregistration of tumor anatomy and tissue oxygen concentration. Proc Natl Acad Sci U S A 99(4):2216–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dhimitruka I, Bobko AA, Eubank TD et al (2013) Phosphonated trityl probe for concurrent in vivo tissue oxygen and pH monitoring using EPR-based techniques. JACS 135:5904–5910

    Article  CAS  Google Scholar 

  42. Bobko AA, Dhimitruka I, Zweier JL et al (2014) Fourier transform EPR of trityl radicals for multifunctional assessment of chemical microenvironment. Angew Chem Int Edit 53:2735–2738

    Article  CAS  Google Scholar 

  43. Song YG, Liu YP, Liu WB et al (2014) Characterization of the binding of the Finland trityl radical with bovine serum albumin. Rsc Adv 4(88):47649–47656. https://doi.org/10.1039/c4ra04616a

    Article  CAS  PubMed  Google Scholar 

  44. Ouari O, Gigmes D (2011) Nitroxides. Royal Society of Chemistry, Croydon, UK, p 592

    Google Scholar 

  45. Khramtsov VV, Yelinova VI, Weiner LM et al (1989) Quantitative determination of SH groups in low- and high-molecular-weight compounds by an electron spin resonance method. Anal Biochem 182(1):58–63. https://doi.org/10.1016/0003-2697(89)90718-5

    Article  CAS  PubMed  Google Scholar 

  46. Khramtsov VV, Yelinova VI, Glazachev YuI et al (1997) Quantitative determination and reversible modification of thiols using imidazolidine biradical disulfide label. J Biochem Biophys Methods 35(2):115–128

    Article  CAS  PubMed  Google Scholar 

  47. Ellman GL (1958) A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys 74(2):443–450. https://doi.org/10.1016/0003-9861(58)90014-6

    Article  CAS  PubMed  Google Scholar 

  48. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  49. Roshchupkina GI, Bobko AA, Bratasz A et al (2008) In vivo EPR measurement of glutathione in tumor-bearing mice using improved disulfide biradical probe. Free Rad Biol Med 45:312–320

    Article  CAS  PubMed  Google Scholar 

  50. Samouilov A, Efimova OV, Bobko AA et al (2014) In vivo proton-electron double-resonance imaging of extracellular tumor pH using an advanced nitroxide probe. Analyt Chem 86(2):1045–1052

    Article  CAS  Google Scholar 

  51. Gorodetskii AA, Eubank TD, Driesschaert B et al (2019) Development of multifunctional Overhauser-enhanced magnetic resonance imaging for concurrent in vivo mapping of tumor interstitial oxygenation, acidosis and inorganic phosphate concentration. Sci Rep 9(1):12093

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bobko AA, Evans J, Denko NC et al (2017) Concurrent longitudinal EPR monitoring of tissue oxygenation, acidosis, and reducing capacity in mouse xenograft tumor models. Cell Biochem Biophys 75:247–253. https://doi.org/10.1007/s12013-016-0733-x

    Article  CAS  PubMed  Google Scholar 

  53. Lin EY, Jones JG, Li P et al (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163(5):2113–2126. https://doi.org/10.1016/S0002-9440(10)63568-7

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gluth TD, Poncelet M, DeVience S et al (2021) Large-scale synthesis of a monophosphonated tetrathiatriarylmethyl spin probe for concurrent in vivo measurement of pO(2), pH and inorganic phosphate by EPR. RSC Adv 11(42):25951–25954. https://doi.org/10.1039/d1ra04551b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. pTAM fitting app 1.1 (2022) https://github.com/tdg0013/pTAMFittingApp/releases

  56. Monaghan TF, Rahman SN, Agudelo CW et al (2021) Foundational statistical principles in medical research: sensitivity, specificity, positive predictive value, and negative predictive value. Medicina (Kaunas) 57(5):503. https://doi.org/10.3390/medicina57050503

  57. Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary-tumors by expression of polyomavirus middle T-oncogene - a transgenic mouse model for metastatic disease. Mol Cell Biol 12(3):954–961. https://doi.org/10.1128/Mcb.12.3.954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elser JJ, Kyle MM, Smith MS et al (2007) Biological stoichiometry in human cancer. PLoS On. 2(10):e0128. https://doi.org/10.1371/journal.pone.0001028

    Article  Google Scholar 

  59. Kareva I (2013) Biological stoichiometry in tumor micro-environments. PLoS One 8(1):51844. https://doi.org/10.1371/journal.pone.0051844

    Article  CAS  Google Scholar 

  60. Balendiran GK, Dabur R, Fraser D (2004) The role of glutathione in cancer. Cell Biochem Funct 22(6):343–352. https://doi.org/10.1002/cbf.1149

    Article  CAS  PubMed  Google Scholar 

  61. Khramtsov VV, Gillies RJ (2014) Janus-faced tumor microenvironment and redox. Antioxid Redox Signal 21:723–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bi QC, Luo RG, Li YS et al (2022) Low inorganic phosphate stress inhibits liver cancer progression: from In Vivo to In Vitro. Adv Therapeutics 5(2):2100224. https://doi.org/10.1002/adtp.202100224

  63. Falchini GE, Malezan A, Poletti ME et al (2021) Analysis of phosphorous content in cancer tissue by synchrotron micro-XRF. Radiat Phys Chem 179:109157. https://doi.org/10.1016/j.radphyschem.2020.109157

  64. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212

    Article  CAS  PubMed  Google Scholar 

  65. Pastore A, Federici G, Bertini E et al (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333(1):19–39

    Article  CAS  PubMed  Google Scholar 

  66. Kang YJ, Enger MD (1990) Glutathione content and growth in A549 human lung carcinoma cells. Exp Cell Res 187(1):177–179

    Article  CAS  PubMed  Google Scholar 

  67. Hall AG (1999) Review: the role of glutathione in the regulation of apoptosis. Eur J Clin Invest 29(3):238–245

    Article  CAS  PubMed  Google Scholar 

  68. Ketterer B (1988) Protective role of glutathione and glutathione transferases in mutagenesis and carcinogenesis. Mutat Res 202(2):343–361

    Article  CAS  PubMed  Google Scholar 

  69. Mitchell JB, Biaglow JE, Russo A (1988) Role of glutathione and other endogenous thiols in radiation protection. Pharmacol Ther 39(1–3):269–274

    Article  CAS  PubMed  Google Scholar 

  70. Ward DN, Griffin AC (1955) Phosphorus incorporation into nucleic acids and proteins of liver nuclei of normal and azo dye-fed rats. Can Res 15(7):456–461

    CAS  Google Scholar 

  71. Kuang Y, Nagy JD, Elser JJ (2004) Biological stoichiometry of tumor dynamics: mathematical models and analysis. Discrete Cont Dyn-B 4(1):221–240

    Google Scholar 

  72. Papaloucas CD, Papaloucas MD, Kouloulias V et al (2014) Measurement of blood phosphorus: a quick and inexpensive method for detection of the existence of cancer in the body. Too good to be true, or forgotten knowledge of the past? Med Hypotheses 82(1): 24–25. https://doi.org/10.1016/j.mehy.2013.10.028

  73. Wilson KM, Shui IM, Mucci LA et al (2015) Calcium and phosphorus intake and prostate cancer risk: a 24-y follow-up study. Am J Clin Nutr 101(1):173–183. https://doi.org/10.3945/ajcn.114.088716

    Article  CAS  PubMed  Google Scholar 

  74. Jin H, Xu CX, Lim HT et al (2009) High dietary inorganic phosphate increases lung tumorigenesis and alters Akt signaling. Am J Respir Crit Care Med 179(1):59–68

    Article  CAS  PubMed  Google Scholar 

  75. Camalier CE, Young MR, Bobe G et al (2010) Elevated phosphate activates N-ras and promotes cell transformation and skin tumorigenesis. Cancer Prev Res (Phila) 3(3):359–370. https://doi.org/10.1158/1940-6207.CAPR-09-0068

    Article  CAS  PubMed  Google Scholar 

  76. Taguchi A, DeVience S, Driesschaert B et al (2020) In vitro simultaneous mapping of the partial pressure of oxygen, pH and inorganic phosphate using electron paramagnetic resonance. Analyst 145(9):3236–3244. https://doi.org/10.1039/d0an00168f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Legenzov EA, Sims SJ, Dirda NDA et al (2015) Disulfide-linked dinitroxides for monitoring cellular thiol redox status through electron paramagnetic resonance spectroscopy. Biochemistry-Us 54(47):6973–6982. https://doi.org/10.1021/acs.biochem.5b00531

    Article  CAS  Google Scholar 

  78. Elajaili H, Biller JR, Rosen GM et al (2015) Imaging disulfide dinitroxides at 250 MHz to monitor thiol redox status. J Magn Reson 260:77–82. https://doi.org/10.1016/j.jmr.2015.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Epel B, Sundramoorthy SV, Krzykawska-Serda M et al (2017) Imaging thiol redox status in murine tumors in vivo with rapid-scan electron paramagnetic resonance. J Magn Reson 276:31–36

    Article  CAS  PubMed  Google Scholar 

  80. Gluth TD, Poncelet M, Gencheva M et al (2022) Biocompatible monophosphonated trityl spin probe, HOPE71, for in vivo measurement of pO(2), pH, and [P-I] by electron paramagnetic resonance spectroscopy. Anal Chem. https://doi.org/10.1021/acs.analchem.2c03476

    Article  PubMed  Google Scholar 

  81. Poncelet M, Huffman JL, Khramtsov VV et al (2019) Synthesis of hydroxyethyl tetrathiatriarylmethyl radicals OX063 and OX071. RSC Adv 9(60):35073–35076. https://doi.org/10.1039/c9ra08633a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially supported by NIH grants CA194013, CA192064, EB028553, EB023990, and U54GM104942.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timothy D. Eubank or Valery V. Khramtsov.

Ethics declarations

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eubank, T.D., Bobko, A.A., Hoblitzell, E.H. et al. In Vivo Electron Paramagnetic Resonance Molecular Profiling of Tumor Microenvironment upon Tumor Progression to Malignancy in an Animal Model of Breast Cancer. Mol Imaging Biol (2023). https://doi.org/10.1007/s11307-023-01847-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11307-023-01847-0

Key words

Navigation