Skip to main content
Log in

Performance Evaluation of a Dedicated Preclinical PET/CT System for the Assessment of Mineralization Process in a Mouse Model of Atherosclerosis

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to assess the impact of positron emission tomography/X-ray computed tomography (PET/CT) acquisition and reconstruction parameters on the assessment of mineralization process in a mouse model of atherosclerosis.

Procedures

All experiments were performed on a dedicated preclinical PET/CT system. CT was evaluated using five acquisition configurations using both a tungsten wire phantom for in-plane resolution assessment and a bar pattern phantom for cross-plane resolution. Furthermore, the radiation dose of these acquisition configurations was calculated. The PET system was assessed using longitudinal line sources to determine the optimal reconstruction parameters by measuring central resolution and its coefficient of variation. An in vivo PET study was performed using uremic ApoE−/−, non-uremic ApoE−/−, and control mice to evaluate optimal PET reconstruction parameters for the detection of sodium [18F]fluoride (Na[18F]F) aortic uptake and for quantitative measurement of Na[18F]F bone influx (Ki) with a Patlak analysis.

Results

For CT, the use of 1 × 1 and 2 × 2 binning detector mode increased both in-plane and cross-plane resolution. However, resolution improvement (163 to 62 μm for in-plane resolution) was associated with an important radiation dose increase (1.67 to 32.78 Gy). With PET, 3D-ordered subset expectation maximization (3D-OSEM) algorithm increased the central resolution compared to filtered back projection (1.42 ± 0.35 mm vs. 1.91 ± 0.08, p < 0.001). The use of 3D-OSEM with eight iterations and a zoom factor 2 yielded optimal PET resolution for preclinical study (FWHM = 0.98 mm). These PET reconstruction parameters allowed the detection of Na[18F]F aortic uptake in 3/14 ApoE−/− mice and demonstrated a decreased Ki in uremic ApoE−/− compared to non-uremic ApoE−/− and control mice (p < 0.006).

Conclusions

Optimizing reconstruction parameters significantly impacted on the assessment of mineralization process in a preclinical model of accelerated atherosclerosis using Na[18F]F PET. In addition, improving the CT resolution was associated with a dramatic radiation dose increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Osborn EA, Jaffer FA (2013) The advancing clinical impact of molecular imaging in CVD. JACC Cardiovasc Imaging 6:1327–1341

    Article  Google Scholar 

  2. Johnson RC, Leopold JA, Loscalzo J (2006) Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res 99:1044–1059

    Article  CAS  Google Scholar 

  3. Jono S, Shioi A, Ikari Y, Nishizawa Y (2006) Vascular calcification in chronic kidney disease. J Bone Miner Metab 24:176–181

    Article  Google Scholar 

  4. Doherty TM, Asotra K, Fitzpatrick LA, Qiao JH, Wilkin DJ, Detrano RC, Dunstan CR, Shah PK, Rajavashisth TB (2003) Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci U S A 100:11201–11206

    Article  CAS  Google Scholar 

  5. Fiz F, Morbelli S, Piccardo A, Bauckneht M, Ferrarazzo G, Pestarino E, Cabria M, Democrito A, Riondato M, Villavecchia G, Marini C, Sambuceti G (2015) 18F-NaF uptake by atherosclerotic plaque on PET/CT imaging: inverse correlation between calcification density and mineral metabolic activity. J Nucl Med 56:1019–1023

    Article  CAS  Google Scholar 

  6. Derlin T, Richter U, Bannas P, Begemann P, Buchert R, Mester J, Klutmann S (2010) Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med 51:862–865

    Article  Google Scholar 

  7. Dweck MR, Chow MWL, Joshi NV, Williams MC, Jones C, Fletcher AM, Richardson H, White A, McKillop G, van Beek EJR, Boon NA, Rudd JHF, Newby DE (2012) Coronary arterial 18F-sodium fluoride uptake. J Am Coll Cardiol 59:1539–1548

    Article  CAS  Google Scholar 

  8. Lasnon C, Dugue AE, Briand M, Blanc-Fournier C, Dutoit S, Louis MH, Aide N (2015) NEMA NU 4-optimized reconstructions for therapy assessment in cancer research with the Inveon small animal PET/CT system. Mol Imaging Biol 17:403–412

    Article  CAS  Google Scholar 

  9. Ghani MU, Zhou Z, Ren L, Wong M, Li Y, Zheng B, Yang K, Liu H (2016) Investigation of spatial resolution characteristics of an in vivo microcomputed tomography system. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 807:129–136

    Article  CAS  Google Scholar 

  10. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    Article  Google Scholar 

  11. Massy ZA (2004) Uremia accelerates both atherosclerosis and arterial calcification in apolipoprotein E knockout mice. J Am Soc Nephrol 16:109–116

    Article  Google Scholar 

  12. Joly L, Djaballah W, Koehl G, Mandry D, Dolivet G, Marie PY, Benetos A (2009) Aortic inflammation, as assessed by hybrid FDG-PET/CT imaging, is associated with enhanced aortic stiffness in addition to concurrent calcification. Eur J Nucl Med Mol Imaging 36:979–985

    Article  Google Scholar 

  13. Willekens I, Lahoutte T, Buls N, Vanhove C, Deklerck R, Bossuyt A, de Mey J (2009) Time-course of contrast enhancement in spleen and liver with Exia 160, Fenestra LC, and VC. Mol Imaging Biol 11:128–135

    Article  Google Scholar 

  14. Badea CT, Hedlund LW, De Lin M et al (2006) Tumor imaging in small animals with a combined micro-CT/micro-DSA system using iodinated conventional and blood pool contrast agents. Contrast Media Mol Imaging 1:153–164

    Article  CAS  Google Scholar 

  15. Suckow CE, Stout DB (2008) MicroCT liver contrast agent enhancement over time, dose, and mouse strain. Mol Imaging Biol 10:114–120

    Article  Google Scholar 

  16. Vandeghinste B, Trachet B, Renard M, Casteleyn C, Staelens S, Loeys B, Segers P, Vandenberghe S (2011) Replacing vascular corrosion casting by in vivo micro-CT imaging for building 3D cardiovascular models in mice. Mol Imaging Biol 13:78–86

    Article  Google Scholar 

  17. Joubert M, Tager P, Legallois D, Defourneaux E, le Guellec B, Gerber B, Morello R, Manrique A (2017) Test-retest reproducibility of cardiac magnetic resonance imaging in healthy mice at 7-tesla: effect of anesthetic procedures. Sci Rep 7:6698. https://doi.org/10.1038/s41598-017-07083-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ford NL, Thornton MM, Holdsworth DW (2003) Fundamental image quality limits for microcomputed tomography in small animals. Med Phys 30:2869–2877

    Article  CAS  Google Scholar 

  19. Bartling SH, Stiller W, Semmler W, Kiessling F (2007) Small animal computed tomography imaging. Curr Med Imaging Rev 3:45–59

    Article  Google Scholar 

  20. Sato F, Sasaki S, Kawashima N, Chino F (1981) Late effects of whole or partial body x-irradiation on mice: life shortening. Int J Radiat Biol Relat Stud Phys Chem Med 39:607–615

    Article  CAS  Google Scholar 

  21. Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, Boerman OC (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med 50:139–147

    Article  Google Scholar 

  22. Chatziioannou A, Qi J, Moore A, Annala A, Nguyen K, Leahy R, Cherry SR (2000) Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imaging 19:507–512

    Article  CAS  Google Scholar 

  23. Constantinescu CC, Mukherjee J (2009) Performance evaluation of an Inveon PET preclinical scanner. Phys Med Biol 54:2885–2899

    Article  Google Scholar 

  24. Kemp BJ, Hruska CB, McFarland AR et al (2009) NEMA NU 2-2007 performance measurements of the Siemens Inveon™ preclinical small animal PET system. Phys Med Biol 54:2359–2376

    Article  Google Scholar 

  25. Derlin T, Wisotzki C, Richter U, Apostolova I, Bannas P, Weber C, Mester J, Klutmann S (2011) In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med 52:362–368

    Article  Google Scholar 

  26. Irmler IM, Gebhardt P, Hoffmann B, Opfermann T, Figge MT, Saluz HP, Kamradt T (2014) 18F-fluoride positron emission tomography/computed tomography for noninvasive in vivo quantification of pathophysiological bone metabolism in experimental murine arthritis. Arthritis Res Ther 16:R155

    Article  Google Scholar 

  27. Cheng C, Alt V, Pan L, Thormann U, Schnettler R, Strauss LG, Schumacher M, Gelinsky M, Dimitrakopoulou-Strauss A (2014) Preliminary evaluation of different biomaterials for defect healing in an experimental osteoporotic rat model with dynamic PET-CT (dPET-CT) using F-18-sodium fluoride (NaF). Injury 45:501–505

    Article  Google Scholar 

  28. Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C (2018) The role of osteoprotegerin in the crosstalk between vessels and bone: its potential utility as a marker of cardiometabolic diseases. Pharmacol Ther 182:115–132

    Article  CAS  Google Scholar 

  29. Gagnon RF, Duguid WP (1983) A reproducible model for chronic renal failure in the mouse. Urol Res 11:11–14

    Article  CAS  Google Scholar 

  30. Piert M, Zittel TT, Becker GA, Jahn M, Stahlschmidt A, Maier G, Machulla HJ, Bares R (2001) Assessment of porcine bone metabolism by dynamic [18F]fluoride ion PET: correlation with bone histomorphometry. J Nucl Med 42:1091–1100

    CAS  PubMed  Google Scholar 

  31. Nikolov IG, Joki N, Nguyen-Khoa T, Ivanovski O, Phan O, Lacour B, Drüeke TB, Massy ZA, dos Reis LM, Jorgetti V, Lafage-Proust MH (2010) Chronic kidney disease bone and mineral disorder (CKD–MBD) in apolipoprotein E-deficient mice with chronic renal failure. Bone 47:156–163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of the FHU REMOD-VHF project and supported by the French Government, managed by the National Research Agency (ANR) under the program “Investissements d’avenir” with the reference ANR-16-RHUS-0003. The authors want to thank Sebastien Hapdey, PhD, for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Manrique.

Ethics declarations

The institutional animal ethics committee approved the animal experiments (#3979).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rucher, G., Cameliere, L., Fendri, J. et al. Performance Evaluation of a Dedicated Preclinical PET/CT System for the Assessment of Mineralization Process in a Mouse Model of Atherosclerosis. Mol Imaging Biol 20, 984–992 (2018). https://doi.org/10.1007/s11307-018-1202-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1202-2

Key words

Navigation