Skip to main content
Log in

In vivo Biodistribution of Radiolabeled Acoustic Protein Nanostructures

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Contrast-enhanced ultrasound plays an expanding role in oncology, but its applicability to molecular imaging is hindered by a lack of nanoscale contrast agents that can reach targets outside the vasculature. Gas vesicles (GVs)—a unique class of gas-filled protein nanostructures—have recently been introduced as a promising new class of ultrasound contrast agents that can potentially access the extravascular space and be modified for molecular targeting. The purpose of the present study is to determine the quantitative biodistribution of GVs, which is critical for their development as imaging agents.

Procedures

We use a novel bioorthogonal radiolabeling strategy to prepare technetium-99m-radiolabeled ([99mTc])GVs in high radiochemical purity. We use single photon emission computed tomography (SPECT) and tissue counting to quantitatively assess GV biodistribution in mice.

Results

Twenty minutes following administration to mice, the SPECT biodistribution shows that 84 % of [99mTc]GVs are taken up by the reticuloendothelial system (RES) and 13 % are found in the gall bladder and duodenum. Quantitative tissue counting shows that the uptake (mean ± SEM % of injected dose/organ) is 0.6 ± 0.2 for the gall bladder, 46.2 ± 3.1 for the liver, 1.91 ± 0.16 for the lungs, and 1.3 ± 0.3 for the spleen. Fluorescence imaging confirmed the presence of GVs in RES.

Conclusions

These results provide essential information for the development of GVs as targeted nanoscale imaging agents for ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abou-Elkacem L, Bachawal SV, Willmann JK (2015) Ultrasound molecular imaging: moving toward clinical translation. Eur J Radiol 84:1685–1693

    Article  PubMed  PubMed Central  Google Scholar 

  2. Strobel D, Seitz K, Blank W et al (2008) Contrast-enhanced ultrasound for the characterization of focal liver lesions—diagnostic accuracy in clinical practice (DEGUM multicenter trial). Ultraschall Med 29:499–505

    Article  CAS  PubMed  Google Scholar 

  3. Allendoerfer J, Tanislav C (2008) Diagnostic and prognostic value of contrast-enhanced ultrasound in acute stroke. Ultraschall Med 29:210–214

    Article  Google Scholar 

  4. Welschehold S, Geisel F, Beyer C et al (2013) Contrast-enhanced transcranial Doppler ultrasonography in the diagnosis of brain death. J Neurol Neurosurg Psychiatry 84:939–940

    Article  PubMed  Google Scholar 

  5. Siracusano S, Bertolotto M, Ciciliato S et al (2011) The current role of contrast-enhanced ultrasound (CEUS) imaging in the evaluation of renal pathology. World J Urol 29:633–638

    Article  PubMed  Google Scholar 

  6. Wilson SR, Burns PN (2010) Microbubble-enhanced US in body imaging: what role? Radiology 257:24–39

    Article  PubMed  Google Scholar 

  7. D’Onofrio M, Canestrini S, De Robertis R et al (2015) CEUS of the pancreas: still research or the standard of care. Eur J Radiol 84:1644–1649

    Article  PubMed  Google Scholar 

  8. Lindner JR (2009) Molecular imaging of cardiovascular disease with contrast-enhanced ultrasonography. Nat Rev Cardiol 6:475–481

    Article  CAS  PubMed  Google Scholar 

  9. Mulvagh SL, Rakowski H, Vannan MA et al (2008) American Society of Echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr 21:1179–1201 quiz 1281

    Article  PubMed  Google Scholar 

  10. Smeenge M, Tranquart F, Mannaerts CK et al (2017) First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer. Investig Radiol 52:419–427

    Article  CAS  Google Scholar 

  11. Tranquart F, Arditi M, Bettinger T et al (2014) Ultrasound contrast agents for ultrasound molecular imaging. Z Gastroenterol 52:1268–1276

    Article  CAS  PubMed  Google Scholar 

  12. Willmann JK, Bonomo L, Carla Testa A et al (2017) Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: first-in-human results. J Clin Oncol 19:2133–2140. https://doi.org/10.1200/JCO.2016.70.8594

  13. Liu J, Levine AL, Mattoon JS et al (2006) Nanoparticles as image enhancing agents for ultrasonography. Phys Med Biol 51:2179–2189

    Article  CAS  PubMed  Google Scholar 

  14. Lanza GM, Wallace KD, Scott MJ et al (1996) A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94:3334–3340

    Article  CAS  PubMed  Google Scholar 

  15. Kripfgans OD, Fowlkes JB, Miller DL et al (2000) Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 26:1177–1189

    Article  CAS  PubMed  Google Scholar 

  16. Martinez HP, Kono Y, Blair SL et al (2010) Hard shell gas-filled contrast enhancement particles for colour Doppler ultrasound imaging of tumors. Med Chem Commun 1:266–270

    Article  CAS  Google Scholar 

  17. Shapiro MG, Goodwill PW, Neogy A et al (2014) Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol 9:311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walsby AE, Hayes PK (1989) Gas vesicle proteins. Biochem J 264:313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pfeifer F (2012) Distribution, formation and regulation of gas vesicles. Nat Rev Microbiol 10:705–715

    Article  CAS  PubMed  Google Scholar 

  20. Walsby AE (1994) Gas Vesicles. Microbiol Rev 58:94–144

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cherin E, Melis JM, Bourdeau RW et al (2017) Acoustic behavior of Halobacterium salinarum gas vesicles in the high-frequency range: experiments and modeling. Ultrasound Med Biol 43:1016–1030

    Article  PubMed  Google Scholar 

  22. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79

    Article  CAS  PubMed  Google Scholar 

  23. Lakshmanan A, Farhadi A, Nety SP et al (2016) Molecular engineering of acoustic protein nanostructures. ACS Nano 10:7314–7322

    Article  CAS  PubMed  Google Scholar 

  24. Lakshmanan A, Lu GJ, Farhadi A et al (2017) Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nature Protocols 12:2050–2080. https://doi.org/10.1038/nprot.2017.081

  25. Bilton HA, Ahmad Z, Janzen N et al (2017) Preparation and evaluation of 99mTc-labeled tridentate chelates for pre-targeting using bioorthogonal chemistry. J Vis Exp. https://doi.org/10.3791/55188

  26. Maresca KP, Marquis JC, Hillier SM et al (2010) Novel polar single amino acid chelates for technetium-99m tricarbonyl-based radiopharmaceuticals with enhanced renal clearance: application to octreotide. Bioconjug Chem 21:1032–1042

    Article  CAS  PubMed  Google Scholar 

  27. van der Have F, Vastenhouw B, Rentmeester M, Beekman FJ (2008) System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT. IEEE Trans Med Imaging 27:960–971

    Article  PubMed  Google Scholar 

  28. Branderhorst W, Vastenhouw B, Beekman FJ (2010) Pixel-based subsets for rapid multi-pinhole SPECT reconstruction. Phys Med Biol 55:2023–2034

    Article  PubMed  Google Scholar 

  29. Ogawa K, Harata Y, Ichihara T et al (1991) A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 10:408–412

    Article  CAS  PubMed  Google Scholar 

  30. Wu C, Van Der Have F, Vastenhouw B et al (2010) Absolute quantitative total-body small-animal SPECT with focusing pinholes. Eur J Nucl Med Mol Imaging 37:2127–2135

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wu C, de Jong JR, Gratama van Andel HA et al (2011) Quantitative multi-pinhole small-animal SPECT: uniform versus non-uniform Chang attenuation correction. Phys Med Biol 56:N183–N193

    Article  CAS  PubMed  Google Scholar 

  32. Maroy R, Boisgard R, Comtat C et al (2008) Segmentation of rodent whole-body dynamic PET images: an unsupervised method based on voxel dynamics. IEEE Trans Med Imaging 27:342–354

    Article  PubMed  Google Scholar 

  33. Feldkamp LA, Davis L, Kress J (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619

    Article  Google Scholar 

  34. James S, Maresca KP, Allis DG et al (2006) Extension of the single amino acid chelate concept (SAAC) to bifunctional biotin analogues for complexation of the M(CO) 3 +1 Core (M = Tc and Re): syntheses, characterization, biotinidase stability, and avidin binding. Bioconjug Chem 17:579–589

    Article  CAS  PubMed  Google Scholar 

  35. Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 130:13518–13519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Al-Azzawi HH, Mathur A, Lu D et al (2006) Pioglitazone increases gallbladder volume in insulin-resistant obese mice. J Surg Res 136:192–197

    Article  CAS  PubMed  Google Scholar 

  37. Melloul E, Raptis DA, Boss A et al (2014) Small animal magnetic resonance imaging: an efficient tool to assess liver volume and intrahepatic vascular anatomy. J Surg Res 187:458–465

    Article  PubMed  Google Scholar 

  38. Kaminskas LM, Boyd BJ (2011) Nanosized drug delivery vectors and the reticuloendothelial system. In: Prokop A (ed) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht

  39. McNeil SE (2009) Nanoparticle therapeutics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:264–271

    Article  CAS  PubMed  Google Scholar 

  40. Nel AE, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  41. Braet F, Wisse E, Bomans P et al (2007) Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc Res Tech 70:230–242

    Article  PubMed  Google Scholar 

  42. Choi HS, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Black KCL, Wang Y, Luehmann HP et al (2014) Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano 8:4385–4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

JLF, MY, AF, MS, and SF acknowledge the financial support of the National Institutes of Health (NIH 1R01EB018975) and the Canadian Institutes for Health Research (CIHR MOP136842). AZ, HB, NJ, and JV acknowledge the financial support of Canadian Cancer Society (Innovation grant 2015:703857) and the Canadian Institutes for Health Research (CIHR/NSERC CHRP Grant 2016: 493840-16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johann Le Floc’h or John F. Valliant.

Ethics declarations

All experimental procedures were approved by the Animal Care Committees at Sunnybrook Research Institute and McMaster University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 193 kb)

ESM 2

(AVI 4181 kb)

ESM 3

(AVI 1219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Floc’h, J., Zlitni, A., Bilton, H.A. et al. In vivo Biodistribution of Radiolabeled Acoustic Protein Nanostructures. Mol Imaging Biol 20, 230–239 (2018). https://doi.org/10.1007/s11307-017-1122-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1122-6

Key Words

Navigation