Skip to main content

Advertisement

Log in

Quantitative metabolome profiling reveals the involvement of the kynurenine pathway in influenza-associated encephalopathy

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Influenza-associated encephalopathy is a serious complication of influenza and is the most common form of acute encephalitis/encephalopathy in Japan. The number of reports from other countries is increasing, reflecting international recognition and concern.

Objectives

Identification of a specific biomarker could provide important clues about the pathophysiology of influenza-associated encephalopathy.

Methods

During the 2009–2011 flu seasons, 34 pediatric patients hospitalized with influenza complications, including influenza-associated encephalopathy, were enrolled in the study. Serum samples were collected during the acute and convalescent phases of disease. Patients were classified into encephalopathy (n = 12) and non-encephalopathy (n = 22) groups. Serum metabolites were identified and quantified by capillary electrophoresis coupled with time-of-flight mass spectrometry. Quantified data were evaluated for comparative analysis. Subsequently, a total of 55 patients with or without encephalopathy were enrolled for absolute quantification of serum kynurenine and quinolinic acid.

Results

Based on m/z values and migration times, 136 metabolites were identified in serum samples. During the acute phase of disease, three metabolites (succinic acid, undecanoic acid, and kynurenine) were significantly higher, and two other metabolites (decanoic acid and cystine) were significantly lower, in the encephalopathy group compared to the non-encephalopathy group (p = 0.012, 0.022, 0.044, 0.038, 0.046, respectively). In a larger patient group, serum kynurenine and its downstream product in tryptophan metabolism, quinolinic acid, a known neurotoxin, were significantly higher in the encephalopathy than the non-encephalopathy without febrile seizure group.

Conclusion

Comprehensive metabolite profiles revealed five metabolites as potential biomarkers for influenza-associated encephalopathy; the tryptophan–kynurenine metabolic process could be associated with its pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Centers for Disease Control and Prevention. (2003). Severe morbidity and mortality associated with influenza in children and young adults–Michigan, 2003. MMWR. Morbidity and Mortality Weekly Report, 52, 837–840.

    Google Scholar 

  • Chen, Y., et al. (2010). The kynurenine pathway and inflammation in amyotrophic lateral sclerosis. Neurotoxicity Research, 18, 132–142.

    Article  CAS  PubMed  Google Scholar 

  • Conrad, M., & Sato, H. (2012). The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): Cystine supplier and beyond. Amino Acids, 42, 231–246.

    Article  CAS  PubMed  Google Scholar 

  • Dawood, F. S., K. Subbarao, A. E. Fiore (2012). Influenza viruses in long S.S., L.K. Pickering, & C.G. Prober (Eds.), Principles and practice of pediatric infectious diseases (4th ed., pp. 1149–1159). San Francisco: Saunders.

  • Guillemin, G. J. (2012). Quinolinic acid, the inescapable neurotoxin. FEBS Journal, 279, 1356–1365.

    Article  CAS  PubMed  Google Scholar 

  • Hartai, Z., et al. (2007). Decreased serum and red blood cell kynurenic acid levels in Alzheimer’s disease. Neurochemistry International, 50, 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Heyes, M. P., Saito, K., Milstien, S., & Schiff, S. J. (1995). Quinolinic acid in tumors, hemorrhage and bacterial infections of the central nervous system in children. Journal of the Neurological Sciences, 133, 112–118.

    Article  CAS  PubMed  Google Scholar 

  • Hornung, B., Amtmann, E., & Sauer, G. (1992). Medium chain length fatty acids stimulate triacylglycerol synthesis in tissue culture cells. Biochemical Pharmacology, 43, 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Hoshino, A., et al. (2012). Epidemiology of acute encephalopathy in Japan, with emphasis on the association of viruses and syndromes. Brain Development, 34, 337–343.

    Article  PubMed  Google Scholar 

  • Ichiyama, T., Morishima, T., Isumi, H., Matsufuji, H., Matsubara, T., & Furukawa, S. (2004). Analysis of cytokine levels and NF-kappaB activation in peripheral blood mononuclear cells in influenza virus-associated encephalopathy. Cytokine, 27, 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Ito, Y., et al. (1999). Detection of influenza virus RNA by reverse transcription-PCR and proinflammatory cytokines in influenza-virus-associated encephalopathy. Journal of Medical Virology, 58, 420–425.

    Article  CAS  PubMed  Google Scholar 

  • Junker, B. H., Klukas, C., & Schreiber, F. (2006). VANTED: A system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics, 7, 109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawada, J., et al. (2003). Systemic cytokine responses in patients with influenza-associated encephalopathy. Journal of Infectious Diseases, 188, 690–698.

    Article  CAS  PubMed  Google Scholar 

  • Look, M. P., et al. (2000). Parallel decrease in neurotoxin quinolinic acid and soluble tumor necrosis factor receptor p75 in serum during highly active antiretroviral therapy of HIV type 1 disease. AIDS Research and Human Retroviruses, 16, 1215–1221.

    Article  CAS  PubMed  Google Scholar 

  • Monton, M. R., & Soga, T. (2007). Metabolome analysis by capillary electrophoresis-mass spectrometry. Journal of Chromatography A, 1168, 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Myint, A. M., Kim, Y. K., Verkerk, R., Scharpe, S., Steinbusch, H., & Leonard, B. (2007). Kynurenine pathway in major depression: evidence of impaired neuroprotection. Journal of Affective Disorders, 98, 143–151.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, L. K., et al. (2005). Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophrenia Research, 80, 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Pugliese, A., Beltramo, T., & Torre, D. (2008). Reye’s and Reye’s-like syndromes. Cell Biochemistry and Function, 26, 741–746.

    Article  CAS  PubMed  Google Scholar 

  • Redjems-Bennani, N., Jeandel, C., Lefebvre, E., Blain, H., Vidailhet, M., & Gueant, J. L. (1998). Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology, 44, 300–304.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta, A., & Ghosh, M. (2012). Comparison of native and capric acid-enriched mustard oil effects on oxidative stress and antioxidant protection in rats. British Journal of Nutrition, 107, 845–849.

    Article  CAS  PubMed  Google Scholar 

  • Soga, T., & Heiger, D. N. (2000). Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Analytical Chemistry, 72, 1236–1241.

    Article  CAS  PubMed  Google Scholar 

  • Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., & Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2, 488–494.

    Article  CAS  PubMed  Google Scholar 

  • Soga, T., Ueno, Y., Naraoka, H., Ohashi, Y., Tomita, M., & Nishioka, T. (2002). Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Analytical Chemistry, 74, 2233–2239.

    Article  CAS  PubMed  Google Scholar 

  • St’astny, F., Skultetyova, I., Pliss, L., & Jezova, D. (2000). Quinolinic acid enhances permeability of rat brain microvessels to plasma albumin. Brain Research Bulletin, 53, 415–420.

    Article  PubMed  Google Scholar 

  • Sugimoto, M., Wong, D. T., Hirayama, A., Soga, T., & Tomita, M. (2010). Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics, 6, 78–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, M., et al. (2000). Influenza virus-induced encephalopathy: Clinicopathologic study of an autopsied case. Pediatrics International, 42, 204–214.

    Article  CAS  PubMed  Google Scholar 

  • Takikawa, O. (2005). Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated l-tryptophan metabolism. Biochemical and Biophysical Research Communications, 338, 12–19. doi:10.1016/j.bbrc.2005.09.032.

    Article  CAS  PubMed  Google Scholar 

  • Togashi, T., Matsuzono, Y., Narita, M., & Morishima, T. (2004). Influenza-associated acute encephalopathy in Japanese children in 1994-2002. Virus Research, 103, 75–78.

    Article  CAS  PubMed  Google Scholar 

  • Toovey, S. (2008). Influenza-associated central nervous system dysfunction: A literature review. Travel Medicine and Infectious Disease, 6, 114–124.

    Article  PubMed  Google Scholar 

  • Veenstra, T. D. (2012). Metabolomics: The final frontier? Genome Medicine, 4, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, G. F., Li, W., & Li, K. (2010). Acute encephalopathy and encephalitis caused by influenza virus infection. Current Opinion in Neurology, 23, 305–311.

    Article  PubMed  Google Scholar 

  • Wishart, D. S., et al. (2013). HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Research, 41, D801–D807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, S., Yasui, K., Hasegawa, Y., Tsuzuki, T., Yoshida, M., & Hashidume, Y. (2012). An autopsy case of pandemic (H1N1) 2009 influenza virus-associated encephalopathy. Rinsho Shinkeigaku, 52, 480–485.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the doctors for providing samples from patients. We also thank Fumiyo Ando for technical assistance. This work was supported by Human Metabolome Technologies, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Ito.

Ethics declarations

Conflicts of interest

Hajime Sato, Kazunori Sasaki, Tamaki Fujimori, and Yoshiaki Ohashi are employees of Human Metabolome Technologies, Inc. All other authors report no potential conflicts.

Ethical approval

The study design and purpose were approved by the institutional review board of Nagoya University and were fully explained to all patients and/or their guardians. Written informed consent was provided by study participants and/or their legal guardians prior to enrolment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torii, Y., Kawano, Y., Sato, H. et al. Quantitative metabolome profiling reveals the involvement of the kynurenine pathway in influenza-associated encephalopathy. Metabolomics 12, 84 (2016). https://doi.org/10.1007/s11306-016-1011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1011-z

Keywords

Navigation