Skip to main content
Log in

Wax ester and lipophilic compound profiling of Euglena gracilis by gas chromatography-mass spectrometry: toward understanding of wax ester fermentation under hypoxia

  • Short Communication
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Lipids are being increasingly used as biodiesel feedstock, and several saturated wax esters from Euglena gracilis are candidates for outdoor bulk production. Wax ester fermentation in Euglena is strongly increased by hypoxia, but key events underlying the metabolic shift toward wax ester biosynthesis are poorly understood. Profiling of wax esters and other lipophilic compounds is the first step for research toward the clarification of wax ester fermentation molecular mechanisms, and thus, a simple and comprehensive platform for their profiling is required. In this study, we established a profiling method for wax esters and lipophilic compounds in Euglena using gas chromatography-mass spectrometry (GC–MS). Using this method, we compared accumulation profiles of wax esters and lipophilic compounds between a wild-type Euglena Z strain and a bleached SM-ZK strain. Both the wild-type and the bleached strains contained C14:0 fatty acid-C14:0 fatty alcohol as a dominant wax ester. Wax ester fermentation initiated 4 h after the cessation of oxygen supply by halting the culture agitation resulting in linear increase and proportional changes of wax ester amounts during 24 h. However, complete anoxia by nitrogen gas aeration inhibited wax ester production and the addition of bicarbonates reversed the inhibition, suggesting that there is a need for an additional carbon source for wax ester fermentation under anoxia. Our simple method enables the investigation of metabolic responses leading to wax ester fermentation in Euglena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Atteia, A., van Lis, R., Tielens, A. G. M., & Martin, W. F. (2013). Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochimica et Biophysica Acta Bioenergetics, 1827, 210–223.

    Article  CAS  Google Scholar 

  • Butovich, I. A., Borowiak, A. M., & Eule, J. C. (2011). Comparative HPLC-MSn analysis of canine and human meibomian lipidomes: Many similarities, a few differences. Scientific Reports, 1, 1–12.

    Article  Google Scholar 

  • Fitzgerald, M., & Murphy, R. C. (2007). Electrospray mass spectrometry of human hair wax esters. Journal of Lipid Research, 48, 1231–1246.

    Article  CAS  PubMed  Google Scholar 

  • Furuhashi, T., & Weckwerth, W. (2013). Introduction to lipid (FAME) analysis in algae using gas chromatography-mass spectrometry. In W. Weckwerth & G. Kahl (Eds.), The handbook of plant metabolomics (pp. 215–225). New York: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Inui, H., Miyatake, K., Nakano, Y., & Kitaoka, S. (1982). Wax ester fermentation in Euglena gracilis. FEBS Letters, 150, 89–93.

    Article  CAS  Google Scholar 

  • Iven, T., Herrfurth, C., Hornung, E., Heilmann, M., Hofvander, P., Stymne, S., et al. (2013). Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry. Plant Methods, 9, 1–14.

    Article  Google Scholar 

  • Koren, L. E., & Hutner, S. H. (1967). High-yield media for photosynthesizing Euglena gracilis z. Journal of Protozoology, 14(Supplement), 17.

    Google Scholar 

  • Krnáčová, K., Vesteg, M., Hampl, V., Vlček, Č., & Horváth, A. (2012). Euglena gracilis and trypanosomatids possess common patterns in predicted mitochondrial targeting presequences. Journal of Molecular Evolution, 75, 119–129.

    Article  PubMed  Google Scholar 

  • Lee, S. H., Stephens, J. L., Paul, K. S., & Englund, P. T. (2006). Fatty acid synthesis by elongases in trypanosomes. Cell, 126, 691–699.

    Article  CAS  PubMed  Google Scholar 

  • Livore, V. I., Tripodi, K. E. J., & Uttaro, A. D. (2007). Elongation of polyunsaturated fatty acids in trypanosomatids. FEBS Journal, 274, 264–274.

    Article  CAS  PubMed  Google Scholar 

  • McCalla, D. R. (1963). Accumualtion of extracellular amino acids by Euglena gracilis. Journal of Protozoology, 10, 491–495.

    Article  CAS  PubMed  Google Scholar 

  • Müller, M., Mentel, M., van Hellemond, J. J., Henze, K., Woehle, C., Gould, S. B., et al. (2012). Biochemistry and evolution of anaerobic energy metabolism in Eukaryotes. Microbiology and Molecular Biology Review, 76, 444–495.

    Article  Google Scholar 

  • Oda, Y., Nakano, Y., & Kitaoka, S. (1982). Utilization and toxicity of exogenous amino acids in Euglena gracilis. Journal of General Microbiology, 128, 853–858.

    CAS  Google Scholar 

  • Samuels, L. Ljerka, Kunst, L., & Jetter, R. (2008). Sealing plant surfaces: Cuticular wax formation by epidermal Cells. Annual Review Plant Biology, 59, 683–707.

    Article  CAS  Google Scholar 

  • Teerawanichpan, P., & Qiu, X. (2010). Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters. Lipids, 45, 263–273.

    Article  CAS  PubMed  Google Scholar 

  • Tucci, S., Vacula, R., Krajcovic, J., Proksch, P., & Martin, W. (2010). Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. Journal of Eukaryotic Microbiology, 57, 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Tulloch, A. P. (1971). Beeswax: Structure of the esters and their component hydroxy acid and diols. Chemistry and Physics of Lipids, 6, 235–265.

    Article  CAS  Google Scholar 

  • Urbanová, K., Vrkoslav, V., Valterová, I., Háková, M., & Cvacka, J. (2012). Structural characterization of wax esters by electron ionization mass spectrometry. Journal of Lipid Research, 53, 204–213.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zimorski, V., Major, P., Yu, R. Y., Hoffmann, K., Brás, X. P., Tucci, S., et al. (2012). Evolutionary significance of anaerobic energy metabolism in eukaryotes. Journal of Endocytobiosis and Cell Research, 23, 64–68.

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Tsugawa (RIKEN) for assisting with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Furuhashi.

Additional information

Funding was provided by the Strategic International Cooperative Program (SICORP) - Joint Research Type Japanese (JST) - US (NSF) Joint Research “Metabolomics for a low carbon society” (METABOLOMICS).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PSD 1,994 kb)

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 56 kb)

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furuhashi, T., Ogawa, T., Nakai, R. et al. Wax ester and lipophilic compound profiling of Euglena gracilis by gas chromatography-mass spectrometry: toward understanding of wax ester fermentation under hypoxia. Metabolomics 11, 175–183 (2015). https://doi.org/10.1007/s11306-014-0687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0687-1

Keywords

Navigation