Skip to main content

Advertisement

Log in

Purinergic signaling in thyroid disease

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

It is known that thyroid hormones play pivotal roles in a wide variety of pathological and physiological events. Thyroid diseases, mainly including hyperthyroidism, hypothyroidism, and thyroid cancer, are highly prevalent worldwide health problems and frequently associated with severe clinical manifestations. However, etiology of hyperthyroidism, hypothyroidism, and thyroid cancer is not fully understood. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. It has been established that purinergic signaling modulates pathways in a wide range of physiopathological conditions including hypertension, diabetes, hepatic diseases, psychiatric and neurodegeneration, rheumatic immune diseases, and cancer. More recently, the purinergic system is found to exist in thyroid gland and play an important role in the pathophysiology of thyroid diseases. Therefore, throughout this review, we focus on elaborating the changes in purinergic receptors, extracellular enzymes, and extracellular nucleotides and adenosine in hyperthyroidism, hypothyroidism, and thyroid cancer. Profound understanding of the relationship between the purinergic signaling with thyroid diseases provides a promising research area for insights into the molecular basis of thyroid diseases and also develops new and exciting insights into the treatment of thyroid diseases, especially thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Nussey S, Whitehead S (2001) Endocrinology: an integrated approach. BIOS Scientific Publishers, Oxford

    Book  Google Scholar 

  2. Mariotti S, Beck-Peccoz P (2000) Physiology of the hypothalamic-pituitary-thyroid axis: 1–63

  3. Pirahanchi Y, Tariq MA, Jialal I (2021) Physiology, Thyroid: 1–9

  4. Mughal BB, Fini JB, Demeneix BA (2018) Thyroid-disrupting chemicals and brain development: an update. Endocr Connect 7:R160–R186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shahid MA, Ashraf MA, Sharma S (2021) Physiology, Thyroid Hormone: 1–14

  6. Chattergoon NN (2019) Thyroid hormone signaling and consequences for cardiac development. J Endocrinol 242:T145–T160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Armstrong M, Asuka E, Fingeret A (2021) Physiology, Thyroid Function: 1–6

  8. Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, Rivkees SA, Samuels M, Sosa JA, Stan MN, Walter MA (2016) 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 26:1343–1421

    Article  PubMed  Google Scholar 

  9. Mariani G, Tonacchera M, Grosso M, Orsolini F, Vitti P, Strauss HW (2021) The role of nuclear medicine in the clinical management of benign thyroid disorders, part 1: hyperthyroidism. J Nucl Med 62:304–312

    Article  CAS  PubMed  Google Scholar 

  10. Mathew P, Rawla P (2021) Hyperthyroidism: 1–14

  11. Dekkers OM, Horváth-Puhó E, Cannegieter SC, Vandenbroucke JP, Sørensen HT, Jørgensen JO (2017) Acute cardiovascular events and all-cause mortality in patients with hyperthyroidism: a population-based cohort study. Eur J Endocrinol 176:1–9

    Article  CAS  PubMed  Google Scholar 

  12. Lillevang-Johansen M, Abrahamsen B, Jørgensen HL, Brix TH, Hegedüs L (2019) Duration of hyperthyroidism and lack of sufficient treatment are associated with increased cardiovascular risk. Thyroid 29:332–340

    Article  CAS  PubMed  Google Scholar 

  13. Kim HJ, Kang T, Kang MJ, Ahn HS, Sohn SY (2020) Incidence and mortality of myocardial infarction and stroke in patients with hyperthyroidism: a nationwide cohort study in Korea. Thyroid 30:955–965

    Article  CAS  PubMed  Google Scholar 

  14. Homoncik M, Gessl A, Ferlitsch A, Jilma B, Vierhapper H (2007) Altered platelet plug formation in hyperthyroidism and hypothyroidism. J Clin Endocrinol Metab 92:3006–3012

    Article  CAS  PubMed  Google Scholar 

  15. Horacek J, Maly J, Svilias I, Smolej L, Cepkova J, Vizda J, Sadilek P, Fatorova I, Zak P (2015) Prothrombotic changes due to an increase in thyroid hormone levels. Eur J Endocrinol 172:537–542

    Article  CAS  PubMed  Google Scholar 

  16. Shahat AS, Hassan WA, El-Sayed WM (2020) N-Acetylcysteine and Safranal prevented the brain damage induced by hyperthyroidism in adult male rats. Nutr Neurosci 3:1–15

  17. Li L, Zhi M, Hou Z, Zhang Y, Yue Y, Yuan Y (2017) Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study. Oncotarget 8:6283–6294

    Article  PubMed  Google Scholar 

  18. Zhi M, Hou Z, We Q, Zhang Y, Li L, Yuan Y (2018) Abnormal spontaneous brain activity is associated with impaired emotion and cognition in hyperthyroidism: a rs-fMRI study. Behav Brain Res 351:188–194

    Article  PubMed  Google Scholar 

  19. Chaker L, Bianco AC, Jonklaas J, Peeters RP (2017) Hypothyroidism Lancet 390:1550–1562

    Article  CAS  PubMed  Google Scholar 

  20. Moon S, Kim MJ, Yu JM, Yoo HJ, Park YJ (2018) Subclinical hypothyroidism and the risk of cardiovascular disease and all-cause mortality: a meta-analysis of prospective cohort studies. Thyroid 28:1101–1110

    Article  PubMed  Google Scholar 

  21. Patil N, Rehman A, Jialal I (2021) Hypothyroidism: 1–13

  22. Salazar P, Cisternas P, Martinez M, Inestrosa NC (2019) Hypothyroidism and cognitive disorders during development and adulthood: implications in the central nervous system. Mol Neurobiol 56:2952–2963

    Article  CAS  PubMed  Google Scholar 

  23. Głombik K, Detka J, Kurek A, Budziszewska B (2020) Impaired brain energy metabolism: involvement in depression and hypothyroidism. Front Neurosci 14:586939

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu B, Wang Z, Lin L, Yang H, Gao F, Gong T, Edden R, Wang G (2020) Brain GABA+ changes in primary hypothyroidism patients before and after levothyroxine treatment: a longitudinal magnetic resonance spectroscopy study. Neuroimage Clin 28:102473

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang H, Tan Z, Zheng Q, Yu J (2018) Metabolic brain network analysis of hypothyroidism symptom based on [(18)F]FDG-PET of rats. Mol Imaging Biol 20:789–797

    Article  CAS  PubMed  Google Scholar 

  26. Ro K, Yuen AD, Du L, Ro CC, Seger C, Yeh MW, Leung AM, Rhee CM (2018) Impact of hypothyroidism and heart failure on hospitalization risk. Thyroid 28:1094–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lillevang-Johansen M, Abrahamsen B, Jørgensen HL, Brix TH, Hegedüs L (2019) Duration of over- and under-treatment of hypothyroidism is associated with increased cardiovascular risk. Eur J Endocrinol 180:407–416

    Article  CAS  PubMed  Google Scholar 

  28. Ning Y, Cheng YJ, Liu LJ, Sara JD, Cao ZY, Zheng WP, Zhang TS, Han HJ, Yang ZY, Zhang Y, Wang FL, Pan RY, Huang JL, Wu LL, Zhang M, Wei YX (2017) What is the association of hypothyroidism with risks of cardiovascular events and mortality? A meta-analysis of 55 cohort studies involving 1,898,314 participants. Bmc Med 15:21

    Article  PubMed  PubMed Central  Google Scholar 

  29. Desideri G, Bocale R, D’Amore A, Necozione S, Boscherini M, Carnassale G, Barini A, Barini A, Bellantone R, Lombardi CP (2017) Replacement therapy with levothyroxine modulates platelet activation in recent-onset post-thyroidectomy subclinical hypothyroidism. Nutr Metab Cardiovasc Dis 27:896–901

    Article  CAS  PubMed  Google Scholar 

  30. François XK, Patrick BD, Modeste WN, Esther N, Albert K, Pierre K, Pierre W (2019) Preventive effects of Aframomum melegueta extracts on the reproductive complications of propylthiouracil-induced hypothyroidism in male rat. Andrologia 51:e13306

    Google Scholar 

  31. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM (2017) Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. JAMA 317:1338–1348

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mcleod D, Zhang L, Durante C, Cooper DS (2019) Contemporary debates in adult papillary thyroid cancer management. Endocr Rev 40:1481–1499

    Article  PubMed  Google Scholar 

  33. Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH (2019) Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int J Med Sci 16:450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schlumberger M, Leboulleux S (2021) Current practice in patients with differentiated thyroid cancer. Nat Rev Endocrinol 17:176–188

    Article  CAS  PubMed  Google Scholar 

  35. Lee K, Anastasopoulou C, Chandran C, Cassaro S (2021) Thyroid Cancer: 1–10

  36. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    CAS  PubMed  Google Scholar 

  37. Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y (2021) From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 6:162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bjelobaba I, Janjic MM, Stojilkovic SS (2015) Purinergic signaling pathways in endocrine system. Auton Neurosci 191:102–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cieślak M, Wojtczak A (2018) Role of purinergic receptors in the Alzheimer’s disease. Purinergic Signal 14:331–344

    Article  PubMed  PubMed Central  Google Scholar 

  40. Reichert KP, Castro M, Assmann CE, Bottari NB, Miron VV, Cardoso A, Stefanello N, Morsch V, Schetinger M (2021) Diabetes and hypertension: pivotal involvement of purinergic signaling. Biomed Pharmacother 137:111273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burnstock G (2017) Purinergic signalling: therapeutic developments. Front Pharmacol 8:661

    Article  PubMed  PubMed Central  Google Scholar 

  42. Burnstock G (2018) The therapeutic potential of purinergic signalling. Biochem Pharmacol 151:157–165

    Article  CAS  PubMed  Google Scholar 

  43. Velázquez-Miranda E, Díaz-Muñoz M, Vázquez-Cuevas FG (2019) Purinergic signaling in hepatic disease. Purinergic Signal 15:477–489

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bartoli F, Burnstock G, Crocamo C, Carrà G (2020) Purinergic signaling and related biomarkers in depression. Brain Sci 10:160

  45. Jain S, Jacobson KA (2021) Purinergic signaling in diabetes and metabolism. Biochem Pharmacol 187:114393

    Article  CAS  PubMed  Google Scholar 

  46. Silveira GF, Buffon A, Bruno AN (2013) New approaches to thyroid hormones and purinergic signaling. J Thyroid Res 2013:434727

    Article  PubMed  PubMed Central  Google Scholar 

  47. Burnstock G (2014) Purinergic signalling in endocrine organs. Purinergic Signal 10:189–231

    Article  CAS  PubMed  Google Scholar 

  48. Vainio M, Fredholm BB, Törnquist K (2000) Thyrotropin regulates adenosine A(1) receptor expression in rat thyroid FRTL-5 cells. Br J Pharmacol 130:471–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Glass R, Burnstock G (2001) Immunohistochemical identification of cells expressing ATP-gated cation channels (P2X receptors) in the adult rat thyroid. J Anat 198:569–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ekokoski E, Webb TE, Simon J, Törnquist K (2001) Mechanisms of P2 receptor-evoked DNA synthesis in thyroid FRTL-5 cells. J Cell Physiol 187:166–175

    Article  CAS  PubMed  Google Scholar 

  51. Kochukov MY, Ritchie AK (2004) A P2X7 receptor stimulates plasma membrane trafficking in the FRTL rat thyrocyte cell line. Am J Physiol Cell Physiol 287:C992–C1002

    Article  CAS  PubMed  Google Scholar 

  52. Kochukov MY, Ritchie AK (2005) P2X7 receptor stimulation of membrane internalization in a thyrocyte cell line. J Membr Biol 204:11–21

    Article  CAS  PubMed  Google Scholar 

  53. Marsigliante S, Elia MG, Di Jeso B, Greco S, Muscella A, Storelli C (2002) Increase of [Ca(2+)](i) via activation of ATP receptors in PC-Cl3 rat thyroid cell line. Cell Signal 14:61–67

    Article  CAS  PubMed  Google Scholar 

  54. Elia MG, Muscella A, Greco S, Vilella S, Storelli C, Marsigliante S (2003) Disturbances in purinergic [Ca2+]i signaling pathways in a transformed rat thyroid cell line. Cell Calcium 33:59–68

    Article  CAS  PubMed  Google Scholar 

  55. Caraccio N, Monzani F, Santini E, Cuccato S, Ferrari D, Callegari MG, Gulinelli S, Pizzirani C, Di Virgilio F, Ferrannini E, Solini A (2005) Extracellular adenosine 5’-triphosphate modulates interleukin-6 production by human thyrocytes through functional purinergic P2 receptors. Endocrinology 146:3172–3178

    Article  CAS  PubMed  Google Scholar 

  56. Zhang L, Xu J, Sun N, Cai H, Ren M, Zhang J, Yu C, Wang Z, Gao L, Zhao J (2013) The presence of adenosine A2a receptor in thyrocytes and its involvement in Graves’ IgG-induced VEGF expression. Endocrinology 154:4927–4938

    Article  CAS  PubMed  Google Scholar 

  57. Arruda AP, Da-Silva WS, Carvalho DP, De Meis L (2003) Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase. Biochem J 375:753–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bruno AN, Carneiro-Ramos MS, Buffon A, Pochmann D, Ricachenevsky FK, Barreto-Chaves ML, Sarkis JJ (2011) Thyroid hormones alter the adenine nucleotide hydrolysis in adult rat blood serum. BioFactors 37:40–45

    Article  CAS  PubMed  Google Scholar 

  59. Hong W, Li G, Nie Y, Zou L, Zhang X, Liu S, Li G, Xu H, Zhang CP, Liang S (2016) Potential involvement of P2 receptors in the pathological processes of hyperthyroidism: a pilot study. Ann Clin Lab Sci 46:254–259

    PubMed  Google Scholar 

  60. Bruno AN, Da SR, Bonan CD, Battastini AM, Barreto-Chaves ML, Sarkis JJ (2003) Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development. Int J Dev Neurosci 21:401–408

    Article  CAS  PubMed  Google Scholar 

  61. Bruno AN, Fontella FU, Crema LM, Bonan CD, Dalmaz C, Barreto-Chaves ML, Sarkis JJ (2005) Hyperthyroidism changes nociceptive response and ecto-nucleotidase activities in synaptosomes from spinal cord of rats in different phases of development. Comp Biochem Physiol A Mol Integr Physiol 140:111–116

    Article  PubMed  Google Scholar 

  62. Bruno AN, Diniz GP, Ricachenevsky FK, Pochmann D, Bonan CD, Barreto-Chaves ML, Sarkis JJ (2005) Hypo-and hyperthyroidism affect the ATP, ADP and AMP hydrolysis in rat hippocampal and cortical slices. Neurosci Res 52:61–68

    Article  CAS  PubMed  Google Scholar 

  63. Bruno AN, Fontella FU, Bonan CD, Barreto-Chaves ML, Dalmaz C, Sarkis JJ (2006) Activation of adenosine A(1) receptors alters behavioral and biochemical parameters in hyperthyroid rats. Behav Brain Res 167:287–294

    Article  CAS  PubMed  Google Scholar 

  64. Bruno AN, Pochmann D, Ricachenevsky FK, Bonan CD, Barreto-Chaves ML, Freitas SJ (2005) 5’-nucleotidase activity is altered by hypo- and hyperthyroidism in platelets from adult rats. Platelets 16:25–30

    Article  CAS  PubMed  Google Scholar 

  65. Baldissarelli J, Santi A, Schmatz R, Martins CC, Zanini D, Reichert KP, Thomé GR, Palma TV, Da CP, Morsch VM, Schetinger M (2018) Hypothyroidism and hyperthyroidism change ectoenzyme activity in rat platelets. J Cell Biochem 119:6249–6257

    Article  CAS  PubMed  Google Scholar 

  66. Balas N, Arad M, Rabinowitz B, Shainberg A (2002) Modulation of cardiac A1-adenosine receptors in rats following treatment with agents affecting heart rate. Mol Cell Biochem 231:107–116

    Article  CAS  PubMed  Google Scholar 

  67. Willems L, Reichelt ME, Molina JG, Sun CX, Chunn JL, Ashton KJ, Schnermann J, Blackburn MR, Headrick JP (2006) Effects of adenosine deaminase and A1 receptor deficiency in normoxic and ischaemic mouse hearts. Cardiovasc Res 71:79–87

    Article  CAS  PubMed  Google Scholar 

  68. Barreto-Chaves ML, Carneiro-Ramos MS, Cotomacci G, Júnior MB, Sarkis JJ (2006) E-NTPDase 3 (ATP diphosphohydrolase) from cardiomyocytes, activity and expression are modulated by thyroid hormone. Mol Cell Endocrinol 251:49–55

    Article  CAS  PubMed  Google Scholar 

  69. Kemeny-Beke A, Jakab A, Zsuga J, Vecsernyes M, Karsai D, Pasztor F, Grenczer M, Szentmiklosi AJ, Berta A, Gesztelyi R (2007) Adenosine deaminase inhibition enhances the inotropic response mediated by A1 adenosine receptor in hyperthyroid guinea pig atrium. Pharmacol Res 56:124–131

    Article  CAS  PubMed  Google Scholar 

  70. Karsai D, Gesztelyi R, Zsuga J, Jakab A, Szendrei L, Juhasz B, Bak I, Szabo G, Lekli I, Vecsernyes M, Varga E, Szentmiklosi AJ, Tosaki A (2007) Influence of hyperthyroidism on the effect of adenosine transport blockade assessed by a novel method in guinea pig atria. Cell Biochem Biophys 47:45–52

    Article  CAS  PubMed  Google Scholar 

  71. Cotomacci G, Sarkis JJ, Fürstenau CR, Barreto-Chaves ML (2012) Thyroid hormones are involved in 5’-nucleotidase modulation in soluble fraction of cardiac tissue. Life Sci 91:137–142

    Article  CAS  PubMed  Google Scholar 

  72. Baldissarelli J, Mânica A, Pillat MM, Bagatini MD, Leal D, Abdalla FH, Morsch VM, Ulrich H, Bornemann CP, Chitolina SM (2020) Increased cytokines production and oxidative stress are related with purinergic signaling and cell survival in post-thyroidectomy hypothyroidism. Mol Cell Endocrinol 499:110594

    Article  CAS  PubMed  Google Scholar 

  73. Bruno AN, Ricachenevsky FK, Pochmann D, Bonan CD, Battastini AM, Barreto-Chaves ML, Sarkis JJ (2005) Hypothyroidism changes adenine nucleotide hydrolysis in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development. Int J Dev Neurosci 23:37–44

    Article  CAS  PubMed  Google Scholar 

  74. Bruno AN, Pochmann D, Ricachenevsky FK, Fontella FU, Bonan CD, Dalmaz C, Barreto-Chaves ML, Sarkis JJ (2005) Nociceptive response and adenine nucleotide hydrolysis in synaptosomes isolated from spinal cord of hypothyroid rats. Neurochem Res 30:1155–1161

    Article  CAS  PubMed  Google Scholar 

  75. Braganhol E, Bruno AN, Bavaresco L, Barreto-Chaves ML, Sarkis JJ, Battastini AM (2006) Neonatal hypothyroidism affects the adenine nucleotides metabolism in astrocyte cultures from rat brain. Neurochem Res 31:449–454

    Article  CAS  PubMed  Google Scholar 

  76. Baldissarelli J, Santi A, Schmatz R, Abdalla FH, Cardoso AM, Martins CC, Dias GR, Calgaroto NS, Pelinson LP, Reichert KP, Loro VL, Morsch VM, Schetinger MR (2017) Hypothyroidism enhanced ectonucleotidases and acetylcholinesterase activities in rat synaptosomes can be prevented by the naturally occurring polyphenol quercetin. Cell Mol Neurobiol 37:53–63

    Article  CAS  PubMed  Google Scholar 

  77. Baldissarelli J, Santi A, Schmatz R, Zanini D, Cardoso AM, Abadalla FH, Thomé GR, Murussi C, Polachini C, Delenogare DP, Loro VL, Morsch VM, Schetinger M (2016) Quercetin changes purinergic enzyme activities and oxidative profile in platelets of rats with hypothyroidism. Biomed Pharmacother 84:1849–1857

    Article  CAS  PubMed  Google Scholar 

  78. Lupoli R, Di Minno MN, Tortora A, Scaravilli A, Cacciapuoti M, Barba L, Di Minno A, Ambrosino P, Lupoli GA, Lupoli G (2015) Primary and secondary hemostasis in patients with subclinical hypothyroidism: effect of levothyroxine treatment. J Clin Endocrinol Metab 100:2659–2665

    Article  CAS  PubMed  Google Scholar 

  79. Baldissarelli J, Pillat MM, Schmatz R, Cardoso AM, Abdalla FH, de Oliveira JS, Polachini C, Casali E, Bornemann CP, Ulrich H, Morsch VM, Schetinger M (2018) Post-thyroidectomy hypothyroidism increases the expression and activity of ectonucleotidases in platelets: possible involvement of reactive oxygen species. Platelets 29:801–810

    Article  CAS  PubMed  Google Scholar 

  80. Zamoner A, Bruno AN, Casali EA, Corbelini PF, Diniz GP, Barreto-Chaves ML, Silva FR, Sarkis JJ, Pessoa-Pureur R (2006) Genomic-independent action of thyroid hormones on NTPDase activities in Sertoli cell cultures from congenital hypothyroid rats. Life Sci 80:51–58

    Article  CAS  PubMed  Google Scholar 

  81. Yildirim MK, Bagcivan I, Sarac B, Kilicarslan H, Yildirim S, Kaya T (2008) Effect of hypothyroidism on the purinergic responses of corpus cavernosal smooth muscle in rabbits. Int Urol Nephrol 40:691–699

    Article  CAS  PubMed  Google Scholar 

  82. Solini A, Cuccato S, Ferrari D, Santini E, Gulinelli S, Callegari MG, Dardano A, Faviana P, Madec S, Di Virgilio F, Monzani F (2008) Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease? Endocrinology 149:389–396

    Article  CAS  PubMed  Google Scholar 

  83. Dardano A, Falzoni S, Caraccio N, Polini A, Tognini S, Solini A, Berti P, Di Virgilio F, Monzani F (2009) 1513A>C polymorphism in the P2X7 receptor gene in patients with papillary thyroid cancer: correlation with histological variants and clinical parameters. J Clin Endocrinol Metab 94:695–698

    Article  CAS  PubMed  Google Scholar 

  84. Gu LQ, Li FY, Zhao L, Liu Y, Chu Q, Zang XX, Liu JM, Ning G, Zhao YJ (2010) Association of XIAP and P2X7 receptor expression with lymph node metastasis in papillary thyroid carcinoma. Endocrine 38:276–282

    Article  CAS  PubMed  Google Scholar 

  85. Yang DM, Teng HC, Chen KH, Tsai ML, Lee TK, Chou YC, Chi CW, Chiou SH, Lee CH (2009) Clodronate-induced cell apoptosis in human thyroid carcinoma is mediated via the P2 receptor signaling pathway. J Pharmacol Exp Ther 330:613–623

    Article  CAS  PubMed  Google Scholar 

  86. Pines A, Bivi N, Vascotto C, Romanello M, D’Ambrosio C, Scaloni A, Damante G, Morisi R, Filetti S, Ferretti E, Quadrifoglio F, Tell G (2006) Nucleotide receptors stimulation by extracellular ATP controls Hsp90 expression through APE1/Ref-1 in thyroid cancer cells: a novel tumorigenic pathway. J Cell Physiol 209:44–55

    Article  CAS  PubMed  Google Scholar 

  87. Bertoni A, de Campos RP, Tsao M, Braganhol E, Furlanetto TW, Wink MR (2018) Extracellular ATP is differentially metabolized on papillary thyroid carcinoma cells surface in comparison to normal cells. Cancer Microenviron 11:61–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jeong YM, Cho H, Kim TM, Kim Y, Jeon S, Bychkov A, Jung CK (2020) CD73 Overexpression promotes progression and recurrence of papillary thyroid carcinoma. Cancers (Basel) 12:3042

  89. Monteiro I, Missiaglia E, Sciarra A, Santos JV, Bouilly J, Romero P, Sempoux C, de Leval L (2021) CD73 expression in normal, hyperplastic, and neoplastic thyroid: a systematic evaluation revealing CD73 overexpression as a feature of papillary carcinomas. Virchows Arch 479:209–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bertoni A, Bracco PA, de Campos RP, Lutz BS, Assis-Brasil BM, Meyer E, Saffi J, Braganhol E, Furlanetto TW, Wink MR (2019) Activity of ecto-5’-nucleotidase (NT5E/CD73) is increased in papillary thyroid carcinoma and its expression is associated with metastatic lymph nodes. Mol Cell Endocrinol 479:54–60

    Article  CAS  PubMed  Google Scholar 

  91. Abbasifarid E, Sajjadi-Jazi SM, Beheshtian M, Samimi H, Larijani B, Haghpanah V (2019) The role of ATP-binding cassette transporters in the chemoresistance of anaplastic thyroid cancer: a systematic review. Endocrinology 160:2015–2023

    Article  CAS  PubMed  Google Scholar 

  92. Guan Y, Li Y, Yang QB, Yu J, Qiao H (2021) LncRNA ABCC6P1 promotes proliferation and migration of papillary thyroid cancer cells via Wnt/β-catenin signaling pathway. Ann Transl Med 9:664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundations of China (grant numbers 81900738).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Xue.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflicts of interest

Ying Le declares that he/she has no conflict of interest.

Donghui Lu declares that he/she has no conflict of interest.

Meng Xue declares that he/she has no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 19.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, Y., Lu, D. & Xue, M. Purinergic signaling in thyroid disease. Purinergic Signalling 19, 221–227 (2023). https://doi.org/10.1007/s11302-022-09858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09858-2

Keywords

Navigation