Skip to main content

Advertisement

Log in

The real-time detection of acupuncture-induced extracellular ATP mobilization in acupoints and exploration of its role in acupuncture analgesia

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Our and in vitro studies had confirmed that mechanosensitive ATP release and accumulation in acupoints was elicited by acupuncture (AP), which might be a pivotal step for triggering AP analgesia. But to date, the dynamics of extracellular ATP (eATP) in the interstitial space during AP process was poorly known, mainly due to the low temporal resolution of the current detection approach. This study attempted to capture rapid eATP signals in vivo in the process of needling, and further explored the role of this eATP mobilization in initiating AP analgesic effect. Ipsilateral 20-min needling was applied on Zusanli acupoint (ST36) of complete Freund’s adjuvant (CFA)–induced ankle arthritis rats. Pain thresholds were assessed in injured-side hindpaws. eATP in the interstitial space was microdialyzed and real-time quantified by luciferin-luciferase assay at 1-min interval with the aid of the microfluid chip. We revealed in behavioral tests that modulation of eATP levels in ST36 influenced AP analgesic effect on ankle arthritis. A transient eATP accumulation was induced by needling that started to mobilize at 4 min, climbed to the peak of 11.21 nM within 3.25 min and gradually recovered. Such AP-induced eATP mobilization was significantly impacted by ankle inflammation, needling depth, needle manipulation, and the presence of local ecto-nucleotidases. This work reveals that needling elicits a transient eATP mobilization in acupoints, which contributes to initiating AP analgesia. This study will help us better understand the peripheral mechanism of AP analgesia and guide clinicians to optimize the needle manipulations to improve AP efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

Ado:

Adenosine

ARL67156:

6-N,N-Diethyl-β-γ-dibromomethylene-d-adenosine-5′-triphosphate

CFA:

Complete Freund’s adjuvant

eATP:

Extracellular ATP

[eATP]:

Concentration of extracellular ATP

HBSS:

Hank’s balanced salt solution

HPLC:

High-performance liquid chromatography

L-L:

Luciferin-luciferase

Nt5e:

Ecto-5′-nucleotidase

NTPDases:

Nucleoside triphosphate diphosphohydrolases

PAP:

Prostatic acid phosphatase

P2 receptors:

Purinergic receptors

PDMS:

Polydimethylsiloxane

PWL:

Paw withdraw latency

PWT:

Paw withdraw threshold

TNAP:

Tissue nonspecific alkaline phosphatase

References

  1. Zhao ZQ (2008) Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 85(4):355–375. https://doi.org/10.1016/j.pneurobio.2008.05.004

    Article  PubMed  Google Scholar 

  2. Takano T, Chen X, Luo F et al (2012) Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain 13(12):1215–1223. https://doi.org/10.1016/j.jpain.2012.09.012

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goldman N, Chen M, Fujita T et al (2010) Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 13(7):883–888. https://doi.org/10.1038/nn.2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang M, Wang X, Xing B et al (2018) Critical roles of TRPV2 channels, histamine H1 and adenosine A1 receptors in the initiation of acupoint signals for acupuncture analgesia. Sci Rep 8(1):6523. https://doi.org/10.1038/s41598-018-24654-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adebiyi MG, Manalo J, Kellems RE et al (2019) Differential role of adenosine signaling cascade in acute and chronic pain. Neurosci Lett 712:134483. https://doi.org/10.1016/j.neulet.2019.134483

    Article  CAS  PubMed  Google Scholar 

  6. Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79(3):463–484. https://doi.org/10.1046/j.1471-4159.2001.00607.x

    Article  CAS  PubMed  Google Scholar 

  7. Poernbacher I, Vincent J-P (2018) Epithelial cells release adenosine to promote local TNF production in response to polarity disruption. Nat Commun 9:4675. https://doi.org/10.1038/s41467-018-07114-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding G, Zhang D, Huang M et al (2012) The function of collagen and mast cells at acupoints. In: Xia Y, Ding G, Wu G (eds) Current research in acupuncture, 1st edn. Springer, New York, pp 53–87. https://doi.org/10.1007/978-1-4614-3357-6_3

    Chapter  Google Scholar 

  9. Yu X, Ding G, Huang H et al (2009) Role of collagen fibers in acupuncture analgesia therapy on rats. Connect Tissue Res 50(2):110–120. https://doi.org/10.1080/03008200802471856

    Article  CAS  PubMed  Google Scholar 

  10. Langevin HM, Churchill DL, Wu J et al (2002) Evidence of connective tissue involvement in acupuncture. FASEB J 16(8):872–874. https://doi.org/10.1096/fj.01-0925fje

    Article  CAS  PubMed  Google Scholar 

  11. Mikolajewicz N, Mohammed A, Morris M et al (2018) Mechanically stimulated ATP release from mammalian cells: systematic review and meta-analysis. J Cell Sci 131(22):jcs223354. https://doi.org/10.1242/jcs.223354

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Sikora J, Hu L et al (2013) ATP release from mast cells by physical stimulation: a putative early step in activation of acupuncture points. Evid Based Complement Alternat Med 2013:350949. https://doi.org/10.1155/2013/350949

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shen D, Shen X, Schwarz W et al (2020) P2Y13 and P2X7 receptors modulate mechanically induced adenosine triphosphate release from mast cells. Exp Dermatol 29(5):499–508. https://doi.org/10.1111/exd.14093

    Article  CAS  PubMed  Google Scholar 

  14. Ohsaki A, Tanuma S, Tsukimoto M (2018) TRPV4 channel-regulated ATP release contributes to gamma-irradiation-induced production of IL-6 and IL-8 in epidermal keratinocytes. Biol Pharm Bull 41(10):1620–1626. https://doi.org/10.1248/bpb.b18-00361

    Article  CAS  PubMed  Google Scholar 

  15. Pritschow BW, Lange T, Kasch J et al (2011) Functional TRPV4 channels are expressed in mouse skeletal muscle and can modulate resting Ca2+ influx and muscle fatigue. Pflugers Arch 461(1):115–122. https://doi.org/10.1007/s00424-010-0883-4

    Article  CAS  PubMed  Google Scholar 

  16. Ho TC, Horn NA, Tuan H et al (2012) Evidence TRPV4 contributes to mechanosensitive ion channels in mouse skeletal muscle fibers. Channels 6(4):246–254. https://doi.org/10.4161/chan.20719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bakri MM, Yahya F, Munawar KMM et al (2018) Transient receptor potential vanilloid 4 (TRPV4) expression on the nerve fibers of human dental pulp is upregulated under inflammatory condition. Arch Oral Biol 89:94–98. https://doi.org/10.1016/j.archoralbio.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  18. Zheng Y, Zuo W, Shen D et al (2021) Mechanosensitive TRPV4 channel-induced extracellular ATP accumulation at the acupoint mediates acupuncture analgesia of ankle arthritis in rats. Life (Basel) 11(6):513. https://doi.org/10.3390/life11060513

    Article  CAS  PubMed  Google Scholar 

  19. Shen D, Zheng Y, Zhang D et al (2021) Acupuncture modulates extracellular ATP levels in peripheral sensory nervous system during analgesia of ankle arthritis in rats. Purinergic Signal 17(3):411–424. https://doi.org/10.1007/s11302-021-09777-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng YW, Wu MY, Shen XY et al (2020) Application of unrestrained conscious rats with acute inflammatory ankle pain to study of acupuncture analgesia. Zhen Ci Yan Jiu 45(8):645–651. https://doi.org/10.13702/j.1000-0607.190703

    Article  CAS  PubMed  Google Scholar 

  21. Wu Y, Huang M, Xia Y et al (2019) Real-time analysis of ATP concentration in acupoints during acupuncture: a new technique combining microdialysis with patch clamp. J Biol Eng 13(93):1–8. https://doi.org/10.1186/s13036-019-0221-0

    Article  CAS  Google Scholar 

  22. Levesque SA, Lavoie EG, Lecka J et al (2007) Specificity of the ecto-ATPase inhibitor ARL 67156 on human and mouse ectonucleotidases. Br J Pharmacol 152(1):141–150. https://doi.org/10.1038/sj.bjp.0707361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Joseph SM, Buchakjian MR, Dubyak GR (2003) Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes. J Biol Chem 278(26):23331–23342. https://doi.org/10.1074/jbc.M302680200

    Article  CAS  PubMed  Google Scholar 

  25. Zimmermann H (2016) Extracellular ATP and other nucleotides—ubiquitous triggers of intercellular messenger release. Purinergic Signal 12(1):25–57. https://doi.org/10.1007/s11302-015-9483-2

    Article  CAS  PubMed  Google Scholar 

  26. Xu C, Wu F, Yu P et al (2019) In vivo electrochemical sensors for neurochemicals: recent update. ACS Sensors 4(12):3102–3118. https://doi.org/10.1021/acssensors.9b01713

    Article  CAS  PubMed  Google Scholar 

  27. Dale N (2021) Real-time measurement of adenosine and ATP release in the central nervous system. Purinergic Signal 17(1):109–115. https://doi.org/10.1007/s11302-020-09733-y

    Article  CAS  PubMed  Google Scholar 

  28. Burnstock G (2009) Acupuncture: a novel hypothesis for the involvement of purinergic signalling. Med Hypotheses 73(4):470–472. https://doi.org/10.1016/j.mehy.2009.05.031

    Article  CAS  PubMed  Google Scholar 

  29. Zylka MJ (2011) Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med 17(4):188–196. https://doi.org/10.1016/j.molmed.2010.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hurt JK, Zylka MJ (2012) PAPupuncture has localized and long-lasting antinociceptive effects in mouse models of acute and chronic pain. Mol Pain 8(28):28. https://doi.org/10.1186/1744-8069-8-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan H, Tumilty S, Chapple C et al (2019) Understanding acupoint sensitization: a narrative review on phenomena, potential mechanism, and clinical application. Evid Based Complement Alternat Med 2019:6064358. https://doi.org/10.1155/2019/6064358

    Article  PubMed  PubMed Central  Google Scholar 

  32. Burnstock G (2016) Purinergic mechanisms and pain. In: Barrett EJ (ed) Pharmacological mechanisms and the modulation of pain, vol 75. Elsevier Science pub.b.u., San Diego, pp 91–137. https://doi.org/10.1016/bs.apha.2015.09.001

    Chapter  Google Scholar 

  33. Rong P-J, Li S, Ben H et al (2013) Peripheral and spinal mechanisms of acupoint sensitization phenomenon. Evid Based Complement Alternat Med 2013.https://doi.org/10.1155/2013/742195

  34. Kim DH, Ryu Y, Hahm DH et al (2017) Acupuncture points can be identified as cutaneous neurogenic inflammatory spots. Sci Rep 7(1):15214. https://doi.org/10.1038/s41598-017-14359-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bours MJL, Dagnelie PC, Giuliani AL et al (2011) P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Front Biosci (Schol Ed) 3:1443–1456

    PubMed  Google Scholar 

  36. Michel D, JoeL G, Fadi J et al (2018) Mechanisms of ATP release by inflammatory cells. Int J Mol Sci 19(4):1222. https://doi.org/10.3390/ijms19041222

    Article  CAS  Google Scholar 

  37. Ning D, Jing J, Pingping Q et al (2018) Mast cells are important regulator of acupoint sensitization via the secretion of tryptase, 5-hydroxytryptamine, and histamine. PLoS One 13(3):e0194022. https://doi.org/10.1371/journal.pone.0194022

    Article  CAS  Google Scholar 

  38. Huang T, Cheng XN (2013) The observation of the change of TCE caused by different acupuncture stimulation. Evid Based Complement Alternat Med 2013:856905. https://doi.org/10.1155/2013/856905

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lu FY, Wang Y, Zhou C et al (2019) Relationship between acupuncture sensations of deqi and different organizational structures of acupoint area. Zhong Guo Zhen Jiu 039(005):523–527. https://doi.org/10.13703/j.0255-2930.2019.05.016

    Article  Google Scholar 

  40. Deng LF, Zhou JF (2010) Effect of Qi arrival produced by electroacupuncture at Zusanli on muscular contractility. Shanghai Zhen Jiu Za Zhi 29(010):668–669. https://doi.org/10.3969/j.issn.1005-0957.2010.10.668

    Article  Google Scholar 

  41. Liu S, Wang Z, Su Y et al (2021) A neuroanatomical basis for electroacupuncture to drive the vagal–adrenal axis. Nature 598(7882):641–645. https://doi.org/10.1038/s41586-021-04001-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang Y, Chen JQ, Lai XS et al (2013) Lateralisation of cerebral response to active acupuncture in patients with unilateral ischaemic stroke: an fMRI study. Acupunct Med 31(3):290–296. https://doi.org/10.1136/acupmed-2012-010299

    Article  PubMed  Google Scholar 

  43. Lu FY, Gao JH, Wang YY et al (2021) Effects of three needling manipulations of Zusanli (st 36) on De Qi sensations and surface myoelectricity in healthy participants. Chin J Integr Med 27(2):91–97. https://doi.org/10.1007/s11655-020-3198-0

    Article  PubMed  Google Scholar 

  44. Yu Z, Luo Lu, Li Y et al (2014) Different manual manipulations and electrical parameters exert different therapeutic effects of acupuncture. J Tradit Chin Med 34(6):754–758. https://doi.org/10.1016/S0254-6272(15)30092-3

    Article  PubMed  Google Scholar 

  45. Chen BC, Lee CM, Lin WW (1996) Inhibition of ecto-ATPase by PPADS, suramin and reactive blue in endothelial cells, C-6 glioma cells and RAW 264.7 macrophages. Br J Pharmacol 119(8):1628–1634. https://doi.org/10.1111/j.1476-5381.1996.tb16082.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Okada M, Nakagawa T, Minami M et al (2002) Analgesic effects of intrathecal administration of P2Y nucleotide receptor agonists UTP and UDP in normal and neuropathic pain model rats. J Pharmacol Exp Ther 303(1):66–73. https://doi.org/10.1124/jpet.102.036079

    Article  CAS  PubMed  Google Scholar 

  47. Li G, Liang JM, Li PW et al (2011) Physiology and cell biology of acupuncture observed in calcium signaling activated by acoustic shear wave. Pflugers Arch 462(4):587–597. https://doi.org/10.1007/s00424-011-0993-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zimmermann H (2016) Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 12(1):25–57. https://doi.org/10.1007/s11302-015-9483-2

    Article  CAS  PubMed  Google Scholar 

  49. Wu S-Y, Chen W-H, Hsieh C-L et al (2014) Abundant expression and functional participation of TRPV1 at Zusanli acupoint (ST36) in mice: mechanosensitive TRPV1 as an “acupuncture-responding channel.” BMC Complement Altern Med 14(96):1–15. https://doi.org/10.1186/1472-6882-14-96

    Article  CAS  Google Scholar 

  50. Reichert KP, Castro M, Assmann CE et al (2021) Diabetes and hypertension: pivotal involvement of purinergic signaling. J Biomed Pharmacother 137(5):111273. https://doi.org/10.1016/j.biopha.2021.111273

    Article  CAS  Google Scholar 

  51. Nagaoka S, Shinbara H, Okubo M et al (2016) Contributions of ADP and ATP to the increase in skeletal muscle blood flow after manual acupuncture stimulation in rats. Acupunct Med 34(3):229–234. https://doi.org/10.1136/acupmed-2015-010959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We like to thank Prof. Ryszard Grygorczyk (Université de Montréal, Montreal, Canada) and Prof. Wolfgang Schwarz (Goethe-University, Frankfurt, Germany) for advice on microfluid chip.

Funding

This study received funding from the National Natural Science Foundation of China (Grant No. 81574076 to L-N W, 82174488 to G-H D, and 82105005 to D S), Budget Research Project of Shanghai Education Commission (Grant No. 2021LK098), Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (Grant No. 21DZ2271800 to G-H D), and Postgraduate Innovation Training Project of Shanghai University of Traditional Chinese Medicine (Grant No. Y2021025 to Y-J L).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization by Li-Na Wang, Guang-Hong Ding, and Xue-Yong Shen; data collection and figure formation by Wei-Min Zuo, Yu-Jia Li, Kai-Yu Cui, Dan Shen, and Ya-Wen Zheng; data analysis by Wei-Min Zuo, Yu-Jia Li; figure formation by Wei-Min Zuo, Yu-Jia Li, Kai-Yu Cui, Dan Shen; methodology by Wei-Min Zuo, Meng Huang, and Yong Wu; data interpretation by Li-Na Wang; first manuscript writing by Wei-Min Zuo; manuscript revision by Li-Na Wang; funding acquisition by Li-Na Wang and Di Zhang. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Li-Na Wang or Guang-Hong Ding.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All experimental protocols were approved by the Animal Care Committee of Shanghai University of Traditional Chinese Medicine (Shanghai, China) (No SZY201807008).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, WM., Li, YJ., Cui, KY. et al. The real-time detection of acupuncture-induced extracellular ATP mobilization in acupoints and exploration of its role in acupuncture analgesia. Purinergic Signalling 19, 69–85 (2023). https://doi.org/10.1007/s11302-021-09833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09833-3

Keywords

Navigation