Skip to main content

Advertisement

Log in

Is the regulation by miRNAs of NTPDase1 and ecto-5’-nucleotidase genes involved with the different profiles of breast cancer subtypes?

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is a public health problem worldwide, causing suffering and premature death among women. As a heterogeneous disease, BC-specific diagnosis and treatment are challenging. Ectonucleotidases are related to tumor development and their expression may vary among BC. miRNAs may participate in epigenetic events and may regulate ectonucleotidases in BC. This study aimed to evaluate the expression of ectonucleotidases according to BC subtypes and to predict if there is post-transcriptional regulation of them by miRNAs. MCF 10A (non-tumorigenic), MCF7 (luminal BC), and MDA-MB-231 (triple-negative BC - TNBC) breast cell lines were used and ENTPD1 (the gene encoding for NTPDase1) and NT5E (the gene encoding for ecto-5’-nucleotidase) gene expression was determined. Interestingly, the expression of ENTPD1 was only observed in MCF7 and NT5E was lower in MCF7 compared to MDA-MB-231 cell line. ATP, ADP, and AMP hydrolysis were observed on the surface of all cell lines, being higher in MDA-MB-231. Like qPCR, the activity of AMP hydrolysis was also lower in the MCF7 cells, which may represent a striking feature of this BC subtype. In silico analyses confirmed that the miRNAs miR-101-3p, miR-141-3p, and miR-340-5p were higher expressed in MCF7 cells and targeted NT5E mRNA. Altogether, data suggest that the regulation of NT5E by miRNAs in MCF7 lineage may direct the molecular profile of luminal BC. Thus, we suggest that the roles of ecto-5’-nucleotidase and the aforementioned miRNAs must be unraveled in TNBC to be possibly defined as diagnostic and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request. Besides, all data discussed in this article are available in cited publications.

Code availability

Not applicable.

References

  1. INCA INdC. Câncer de mama - 2020. 2020. https://www.inca.gov.br/assuntos/cancer-de-mama

  2. INCA INdC. Estimativa 2020 : incidência de câncer no Brasil. 2019:120

  3. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–53. https://doi.org/10.1002/ijc.31937

    Article  CAS  PubMed  Google Scholar 

  4. Narayan AK, Lee CI, Lehman CD (2020) Screening for breast cancer. Med Clin N Am 104(6):1007–21. https://doi.org/10.1016/j.mcna.2020.08.003

    Article  PubMed  Google Scholar 

  5. Reyna-Jeldes M, Díaz-Muñoz M (2021) Autocrine and paracrine purinergic signaling in the most lethal types of cancer. Purinergic Signal 17(3):345–370. https://doi.org/10.1007/s11302-021-09785-8

  6. Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA (2018) Targeting adenosine receptor signaling in cancer immunotherapy. Int J Mol Sci 19(12):3837. https://doi.org/10.3390/ijms19123837

  7. Burnstock G (2017) Purinergic signalling: therapeutic developments. Front Pharmacol 8:661

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vultaggio-Poma V, Sarti AC (2020) Extracellular ATP: a feasible target for cancer therapy. Cells 9(11):2496. https://doi.org/10.3390/cells9112496

  9. Woods LT, Forti KM, Shanbhag VC, Camden JM, Weisman GA (2021) P2Y receptors for extracellular nucleotides: contributions to cancer progression and therapeutic implications. Biochem Pharmacol 187:114406. https://doi.org/10.1016/j.bcp.2021.114406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Novitskaya T, Chepurko E, Covarrubias R, Novitskiy S, Ryzhov SV, Feoktistov I et al (2016) Extracellular nucleotide regulation and signaling in cardiac fibrosis. J Mol Cell Cardiol 93:47–56

    Article  CAS  PubMed  Google Scholar 

  11. Jiang ZG, Wu Y, Csizmadia E, Feldbrügge L, Enjyoji K, Tigges J et al (2014) Characterization of circulating microparticle-associated CD39 family ecto-nucleotidases in human plasma. Purinergic Signal 10(4):611–8. https://doi.org/10.1007/s11302-014-9423-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bergamin LS, Braganhol E, Zanin RF, Edelweiss MI, Battastini AM (2012) Ectonucleotidases in tumor cells and tumor-associated immune cells: an overview. J Biomed Biotechnol 2012:959848. https://doi.org/10.1155/2012/959848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bao R, Shui X, Hou J, Li J, Deng X, Zhu X et al (2016) Adenosine and the adenosine A2A receptor agonist, CGS21680, upregulate CD39 and CD73 expression through E2F–1 and CREB in regulatory T cells isolated from septic mice. Int J Mol Med 38(3):969–75. https://doi.org/10.3892/ijmm.2016.2679

    Article  CAS  PubMed  Google Scholar 

  14. de Araújo JB, Kerkhoff VV, de Oliveira Maciel SFV, de Resende ESDT (2021) Targeting the purinergic pathway in breast cancer and its therapeutic applications. 17(2):179-200https://doi.org/10.1007/s11302-020-09760-9

  15. Petruk N, Tuominen S, Åkerfelt M, Mattsson J, Sandholm J, Nees M et al (2021) CD73 facilitates EMT progression and promotes lung metastases in triple-negative breast cancer. Sci Rep 11(1):6035. https://doi.org/10.1038/s41598-021-85379-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bracco PA, Bertoni AP, Wink MR (2014) NTPDase5/PCPH as a new target in highly aggressive tumors: a systematic review. BioMed Res Int 2014:123010. https://doi.org/10.1155/2014/123010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stagg J, Beavis PA, Divisekera U, Liu MC, Möller A, Darcy PK et al (2012) CD73-deficient mice are resistant to carcinogenesis. Cancer Res 72(9):2190–6. https://doi.org/10.1158/0008-5472.can-12-0420

    Article  CAS  PubMed  Google Scholar 

  18. Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ et al (2013) CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A 110(27):11091–6. https://doi.org/10.1073/pnas.1222251110

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jin F, Qi J, Liu D, You Y, Shu G, Du Y et al (2021) Cancer-cell-biomimetic Upconversion nanoparticles combining chemo-photodynamic therapy and CD73 blockade for metastatic triple-negative breast cancer. J Control Release 337:90–104. https://doi.org/10.1016/j.jconrel.2021.07.021

    Article  CAS  PubMed  Google Scholar 

  20. Moulatlet ACB (2013) MicroRNAs como biomarcadores no carcinoma papilífero de tireóide: associação com mutações somáticas frequentes e significado biológico. Universidade de São Paulo, p 125. https://doi.org/10.11606/D.87.2014.tde-08052014-163253

  21. Yang F, Luo LJ, Zhang L, Wang DD, Yang SJ, Ding L et al (2017) MiR-346 promotes the biological function of breast cancer cells by targeting SRCIN1 and reduces chemosensitivity to docetaxel. Gene. 600:21–8. https://doi.org/10.1016/j.gene.2016.11.037

    Article  CAS  PubMed  Google Scholar 

  22. Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT et al (2020) MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: a review. Front Oncol 10:526850. https://doi.org/10.3389/fonc.2020.526850

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sabit H, Cevik E, Tombuloglu H, Abdel-Ghany S, Tombuloglu G, Esteller M (2021) Triple negative breast cancer in the era of miRNA. Crit Rev Oncol Hematol 157:103196. https://doi.org/10.1016/j.critrevonc.2020.103196

    Article  PubMed  Google Scholar 

  24. Tamajusuku AS, Carrillo-Sepúlveda MA, Braganhol E, Wink MR, Sarkis JJ, Barreto-Chaves ML et al (2006) Activity and expression of ecto-5’-nucleotidase/CD73 are increased by thyroid hormones in vascular smooth muscle cells. Mol Cell Biochem 289(1–2):65–72. https://doi.org/10.1007/s11010-006-9148-0

    Article  CAS  PubMed  Google Scholar 

  25. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+ -stimulated ATPase activity. Anal Biochem 157(2):375–80. https://doi.org/10.1016/0003-2697(86)90640-8

    Article  CAS  PubMed  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  27. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  28. INCA INdC. Estatísticas de câncer. 2021. https://www.inca.gov.br/numeros-de-cancer

  29. HEALTH P. Breast cancer treatment. 2019. https://www.cancer.gov/types/breast/hp/breast-treatment-pdq

  30. Del Carmen Martínez-Jiménez V, Méndez-Mancilla A, Patricia Portales-Pérez D (2018) miRNAs in nutrition, obesity, and cancer: the biology of miRNAs in metabolic disorders and its relationship with cancer development. Mol Nutr Food Res 62(1) https://doi.org/10.1002/mnfr.201600994

  31. Eun SY, Ko YS, Park SW, Chang KC, Kim HJ (2015) P2Y2 nucleotide receptor-mediated extracellular signal-regulated kinases and protein kinase C activation induces the invasion of highly metastatic breast cancer cells. Oncol Rep 34(1):195–202. https://doi.org/10.3892/or.2015.3972

    Article  CAS  PubMed  Google Scholar 

  32. Cai XY, Ni XC, Yi Y, He HW, Wang JX, Fu YP et al (2016) Overexpression of CD39 in hepatocellular carcinoma is an independent indicator of poor outcome after radical resection. Medicine 95(40):e4989. https://doi.org/10.1097/md.0000000000004989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cai XY, Wang XF, Li J, Dong JN, Liu JQ, Li NP et al (2015) Overexpression of CD39 and high tumoral CD39+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. Int J Clin Exp Pathol 8(11):14757–64

    PubMed  PubMed Central  Google Scholar 

  34. Zhang B, Cheng B, Li FS, Ding JH, Feng YY, Zhuo GZ et al (2015) High expression of CD39/ENTPD1 in malignant epithelial cells of human rectal adenocarcinoma. Tumour Biol 36(12):9411–9. https://doi.org/10.1007/s13277-015-3683-9

    Article  CAS  PubMed  Google Scholar 

  35. Abousamra NK, Salah El-Din M, Hamza Elzahaf E, Esmael ME (2015) Ectonucleoside triphosphate diphosphohydrolase-1 (E-NTPDase1/CD39) as a new prognostic marker in chronic lymphocytic leukemia. Leuk Lymphoma 56(1):113–9. https://doi.org/10.3109/10428194.2014.907893

    Article  CAS  PubMed  Google Scholar 

  36. Schmid S, Kübler M, Korcan Ayata C, Lazar Z, Haager B, Hoßfeld M et al (2015) Altered purinergic signaling in the tumor associated immunologic microenvironment in metastasized non-small-cell lung cancer. Lung Cancer (Amsterdam, Netherlands). 90(3):516–21. https://doi.org/10.1016/j.lungcan.2015.10.005

    Article  Google Scholar 

  37. Ni X, Wan W, Ma J, Liu X, Zheng B, He Z et al (2021) A novel prognostic biomarker of luminal breast cancer: high CD39 expression is related to poor survival. Front Genet 12:682503. https://doi.org/10.3389/fgene.2021.682503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu S, Shao QQ, Sun JT, Yang N, Xie Q, Wang DH et al (2013) Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas. Neuro-oncology 15(9):1160–72. https://doi.org/10.1093/neuonc/not067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cappellari AR, Vasques GJ, Bavaresco L, Braganhol E, Battastini AM (2012) Involvement of ecto-5’-nucleotidase/CD73 in U138MG glioma cell adhesion. Mol Cell Biochem 359(1–2):315–22. https://doi.org/10.1007/s11010-011-1025-9

    Article  CAS  PubMed  Google Scholar 

  40. Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36(3):293–303. https://doi.org/10.1038/onc.2016.206

    Article  CAS  PubMed  Google Scholar 

  41. Yang X, Pei S, Wang H, Jin Y, Yu F, Zhou B et al (2017) Tiamulin inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of CD73. BMC Cancer 17(1):255. https://doi.org/10.1186/s12885-017-3250-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu S, Li D, Liu J, Wang H, Horecny I, Shen R et al (2021) A novel CD73 inhibitor SHR170008 suppresses adenosine in tumor and enhances anti-tumor activity with PD-1 blockade in a mouse model of breast cancer. Onco Targets Ther 14:4561–4574. https://doi.org/10.2147/ott.s326178

  43. Cadassou O, Raza MZ, Machon C, Gudefin L, Armanet C, Chettab K et al (2021) Enhanced migration of breast and lung cancer cells deficient for cN-II and CD73 via COX-2/PGE2/AKT axis regulation. Cell Oncol (Dordr) 44(1):151–165. https://doi.org/10.1007/s13402-020-00558-w

  44. Gheler FV, Cappellari AR, Renck D, de Souza JB, de Melo RO, Moehlecke BZ et al (2021) AMP hydrolysis reduction in blood plasma of breast cancer elderly patients after different treatments. Mol Cell Biochem 476(10):3719–3727. https://doi.org/10.1007/s11010-021-04199-x

  45. Guan H, Dai Z, Ma Y, Wang Z, Liu X, Wang X (2016) MicroRNA-101 inhibits cell proliferation and induces apoptosis by targeting EYA1 in breast cancer. Int J Mol Med 37(6):1643–51. https://doi.org/10.3892/ijmm.2016.2557

    Article  CAS  PubMed  Google Scholar 

  46. Yi J, Huang WZ, Wen YQ, Yi YC (2019) Effect of miR-101 on proliferation and oxidative stress-induced apoptosis of breast cancer cells via Nrf2 signaling pathway. Eur Rev Med Pharmacol Sci 23(20):8931–9. https://doi.org/10.26355/eurrev_201910_19291

    Article  CAS  PubMed  Google Scholar 

  47. Wang L, Li L, Guo R, Li X, Lu Y, Guan X et al (2014) miR-101 promotes breast cancer cell apoptosis by targeting Janus kinase 2. Cell Physiol Biochem 34(2):413–22. https://doi.org/10.1159/000363010

    Article  CAS  PubMed  Google Scholar 

  48. Jiang H, Li L, Zhang J, Wan Z, Wang Y, Hou J et al (2020) MiR-101-3p and Syn-Cal14.1a synergy in suppressing EZH2-induced progression of breast cancer. OncoTargets Ther 13:9599–609. https://doi.org/10.2147/ott.s264600

    Article  CAS  Google Scholar 

  49. Li JT, Jia LT, Liu NN, Zhu XS, Liu QQ, Wang XL et al (2015) MiRNA-101 inhibits breast cancer growth and metastasis by targeting CX chemokine receptor 7. Oncotarget. 6(31):30818–30. https://doi.org/10.18632/oncotarget.5067

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu J, Pang Y, Wang H, Li Y, Sun X, Xu F et al (2016) miR-101 inhibits the proliferation and migration of breast cancer cells via downregulating the expression of DNA methyltransferase 3a. Xi bao yu fen zi mian yi xue za zhi 32(3):299–303

    PubMed  Google Scholar 

  51. Taha M, Mitwally N (2020) Potential diagnostic and prognostic utility of miR-141, miR-181b1, and miR-23b in breast cancer. Int J Mol Sci 21(22):8589. https://doi.org/10.3390/ijms21228589

  52. Sun S, Ma J, Xie P, Wu Z, Tian X (2020) Hypoxia-responsive miR-141-3p is involved in the progression of breast cancer via mediating the HMGB1/HIF-1α signaling pathway. J Gene Med 22(10):e3230. https://doi.org/10.1002/jgm.3230

  53. Han G, Qiu N, Luo K, Liang H, Li H (2019) Downregulation of miroRNA-141 mediates acquired resistance to trastuzumab and is associated with poor outcome in breast cancer by upregulating the expression of ERBB4. J Cell Biochem 1–11. https://doi.org/10.1002/jcb.28416

  54. Manavalan TT, Teng Y, Appana SN, Datta S, Kalbfleisch TS, Li Y et al (2011) Differential expression of microRNA expression in tamoxifen-sensitive MCF-7 versus tamoxifen-resistant LY2 human breast cancer cells. Cancer Lett 313(1):26–43. https://doi.org/10.1016/j.canlet.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang Z, Xu Y, Wan M, Zeng X, Wu J (2021) miR-340: A multifunctional role in human malignant diseases. Int J Biol Sci 17(1):236–46. https://doi.org/10.7150/ijbs.51123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen CP, Sun ZL, Lu X, Wu WX, Guo WL, Lu JJ et al (2016) MiR-340 suppresses cell migration and invasion by targeting MYO10 in breast cancer. Oncol Rep 35(2):709–16. https://doi.org/10.3892/or.2015.4411

    Article  CAS  PubMed  Google Scholar 

  57. Wu ZS, Wu Q, Wang CQ, Wang XN, Huang J, Zhao JJ et al (2011) miR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met. Cancer 117(13):2842–52. https://doi.org/10.1002/cncr.25860

    Article  CAS  PubMed  Google Scholar 

  58. Yu Y, He Y, Shao Y, Chen Q, Liu H (2020) lncRNA PCNAP1 predicts poor prognosis in breast cancer and promotes cancer metastasis via miR-340-5p-dependent upregulation of SOX4. Oncol Rep 44(4):1511–23. https://doi.org/10.3892/or.2020.7699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meng L, Yue X, Zhou D, Li H (2020) Long non coding RNA OIP5-AS1 promotes metastasis of breast cancer via miR-340-5p/ZEB2 axis. Oncol Rep 44(4):1662–70. https://doi.org/10.3892/or.2020.7724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maskey N, Li D, Xu H, Song H, Wu C, Hua K et al (2017) MicroRNA-340 inhibits invasion and metastasis by downregulating ROCK1 in breast cancer cells. Oncol Lett 14(2):2261–7. https://doi.org/10.3892/ol.2017.6439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shi Z, Li Y, Qian X, Hu Y, Liu J, Zhang S et al (2017) MiR-340 inhibits triple-negative breast cancer progression by reversing EZH2 mediated miRNAs dysregulated expressions. J Cancer 8(15):3037–48. https://doi.org/10.7150/jca.19315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mohammadi-Yeganeh S, Paryan M, Arefian E, Vasei M, Ghanbarian H, Mahdian R et al (2016) MicroRNA-340 inhibits the migration, invasion, and metastasis of breast cancer cells by targeting Wnt pathway. Tumour Biol 37(7):8993–9000. https://doi.org/10.1007/s13277-015-4513-9

    Article  CAS  PubMed  Google Scholar 

  63. Boo L, Ho WY, Mohd Ali N, Yeap SK, Ky H, Chan KG et al (2017) Phenotypic and microRNA transcriptomic profiling of the MDA-MB-231 spheroid-enriched CSCs with comparison of MCF-7 microRNA profiling dataset. PeerJ 5:e3551. https://doi.org/10.7717/peerj.3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Boo L, Ho WY, Ali NM, Yeap SK, Ky H, Chan KG et al (2016) MiRNA transcriptome profiling of spheroid-enriched cells with cancer stem cell properties in human breast MCF-7 cell line. Int J Biol Sci 12(4):427–45. https://doi.org/10.7150/ijbs.12777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reynolds DS, Tevis KM, Blessing WA, Colson YL, Zaman MH, Grinstaff MW (2017) Breast cancer spheroids reveal a differential cancer stem cell response to chemotherapeutic treatment. Scientific Reports 7(1):10382. https://doi.org/10.1038/s41598-017-10863-4

  66. Zongaro S, Hukema R, D’Antoni S, Davidovic L, Barbry P, Catania MV et al (2013) The 3′ UTR of FMR1 mRNA is a target of miR-101, miR-129-5p and miR-221: implications for the molecular pathology of FXTAS at the synapse. Hum Mol Genet 22(10):1971–82. https://doi.org/10.1093/hmg/ddt044

    Article  CAS  PubMed  Google Scholar 

  67. Mak CS, Yung MM, Hui LM, Leung LL, Liang R, Chen K et al (2017) MicroRNA-141 enhances anoikis resistance in metastatic progression of ovarian cancer through targeting KLF12/Sp1/survivin axis. Mol Cancer 16(1):11. https://doi.org/10.1186/s12943-017-0582-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Song C, Chen H, Wang T, Ru G, Ding Q, Yang W (2017) miR-141-3p suppresses expression of androgen receptors and functions as a tumor suppressor gene in prostate carcinogenesis. Int J Clin Med 08:55–72. https://doi.org/10.4236/ijcm.2017.82006

    Article  CAS  Google Scholar 

  69. Arivazhagan R, Lee J, Bayarsaikhan D, Kwak P, Son M, Byun K et al (2018) MicroRNA-340 inhibits the proliferation and promotes the apoptosis of colon cancer cells by modulating REV3L. Oncotarget 9(4):5155–68. https://doi.org/10.18632/oncotarget.23703

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Process: 446747/2014-9).

Author information

Authors and Affiliations

Authors

Contributions

F.C.S., T.G.A., C.R.F., and M.S.G. designed the study. F.C.S. and C.A.M. performed the qPCR analyses of ectonucleotidases gene expression. F.C.S., A.B.M.N., and T.C.S.C conducted all in silico analyses. F.C.S., M.S.G., T.G.A., and C.R.F. designed and supervised experiments. F.C.S., A.B.M.N., C.A.M., and T.C.S.C. analyzed data. F.C.S. and C.R.F. drafted the manuscript and all authors reviewed and approved the final version sent for publication.

Corresponding author

Correspondence to Cristina Ribas Fürstenau.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 840 KB)

Supplementary file2 (XLS 239 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.C., de Melo Neto, A.B., Martins, C.A. et al. Is the regulation by miRNAs of NTPDase1 and ecto-5’-nucleotidase genes involved with the different profiles of breast cancer subtypes?. Purinergic Signalling 18, 123–133 (2022). https://doi.org/10.1007/s11302-021-09824-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09824-4

Keywords

Navigation