Skip to main content
Log in

Pharmacological characterization of DPTN and other selective A3 adenosine receptor antagonists

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The A3 adenosine receptor (AR) is emerging as an attractive drug target. Antagonists are proposed for the potential treatment of glaucoma and asthma. However, currently available A3AR antagonists are potent in human and some large animals, but weak or inactive in mouse and rat. In this study, we re-synthesized a previously reported A3AR antagonist, DPTN, and evaluated its affinity and selectivity at human, mouse, and rat ARs. We showed that DPTN, indeed, is a potent A3AR antagonist for all three species tested, albeit a little less selective for mouse and rat A3AR in comparison to the human A3AR. DPTN’s Ki values at respective A1, A2A, A2B, and A3 receptors were (nM) 162, 121, 230, and 1.65 (human); 411, 830, 189, and 9.61 (mouse); and 333, 1147, 163, and 8.53 (rat). Its antagonist activity at both human and mouse A3ARs was confirmed in a cyclic AMP functional assay. Considering controversial use of currently commercially available A3AR antagonists in rats and mice, we also re-examined other commonly used and selective A3AR antagonists under the same experimental conditions. The Ki values of MRS1523 were shown to be 43.9, 349, and 216 nM at human, mouse, and rat A3ARs, respectively. MRS1191 and MRS1334 showed incomplete inhibition of [125I]I-AB-MECA binding to mouse and rat A3ARs, while potent human A3AR antagonists, MRS1220, MRE3008F20, PSB10, PSB-11, and VUF5574 were largely inactive. Thus, we demonstrated that DPTN and MRS1523 are among the only validated A3AR antagonists that can be possibly used (at an appropriate concentration) in mouse or rat to confirm an A3AR-related mechanism or function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The original data from this study will be made available upon reasonable request.

References

  1. Cvicek V, Goddard WA III, Abrol R (2016) Structure-based sequence alignment of the transmembrane domains of all human GPCRs: phylogenetic, structural and functional implications. PLoS Comput Biol 12(3):e1004805. https://doi.org/10.1371/journal.pcbi.1004805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci USA 89(16):7432–7326

    Article  CAS  Google Scholar 

  3. Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci USA 90(21):10365–10369

    Article  CAS  Google Scholar 

  4. Salvatore CA, Tilley SL, Latour AM, Fletcher DS, Koller BH, Jacobson MA (2000) Disruption of the A3 adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem 275(6):4429–4434

    Article  CAS  Google Scholar 

  5. Garcia-Garcia L, Olle L, Martin M, Roca-Ferrer J, Muñoz-Cano R (2021) Adenosine signaling in mast cells and allergic diseases. Int J Mol Sci 22(10):5203. https://doi.org/10.3390/ijms22105203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramkumar V, Stiles GL, Beaven MA, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268(23):16887–16990

    Article  CAS  Google Scholar 

  7. Zhong Y, Yang Z, Huang WC (1830) Luo X (2013) Adenosine, adenosine receptors and glaucoma: an updated overview. Biochim Biophys Acta 4:2882–2890

    Google Scholar 

  8. Gao ZG, Jacobson KA (2017) Purinergic signaling in mast cell degranulation and asthma. Front Pharmacol 8:947. https://doi.org/10.3389/fphar.2017.00947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jacobson KA, Civan MM (2016) Ocular purine receptors as drug targets in the eye. J Ocular Pharmacol Therap 32:534–547

    Article  CAS  Google Scholar 

  10. van Galen PJ, van Bergen AH, Gallo-Rodriguez C, Melman N, Olah ME, IJzerman AP, Stiles GL, Jacobson KA (1994) A binding site model and structure-activity relationships for the rat A3 adenosine receptor. Mol Pharmacol 45(6):1101–1111

    PubMed  Google Scholar 

  11. Gao ZG, Blaustein JB, Gross AS, Melman N, Jacobson KA (2003) N6-Substituted adenosine derivatives: selectivity, efficacy, and species differences at A3 adenosine receptors. Biochem Pharmacol 65(10):1675–1684

    Article  CAS  Google Scholar 

  12. Alnouri MW, Jepards S, Casari A, Schiedel AC, Hinz S, Muller CE (2015) Selectivity is species-dependent: characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal 11(3):389–407

    Article  CAS  Google Scholar 

  13. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors–an update. Pharmacol Rev 63:1–34

    Article  CAS  Google Scholar 

  14. Yamano K, Inoue M, Masaki S, Saki M, Ichimura M, Satoh M (2006) Generation of adenosine A3 receptor functionally humanized mice for the evaluation of the human antagonists. Biochem Pharmacol 71(3):294–306

    Article  CAS  Google Scholar 

  15. Yamano K, Inoue M, Masaki S, Saki M, Ichimura M, Satoh M (2005) Human adenosine A3 receptor activation leads to intracellular Ca2+ mobilization but is insufficient to activate the signaling pathway via phosphoinositide 3-kinase gamma in mice. Biochem Pharmacol 70(10):1487–1496

    Article  CAS  Google Scholar 

  16. Jacobson KA, Park KS, Jiang JL, Kim YC, Olah ME, Stiles GL, Ji XD (1997) Pharmacological characterization of novel A3 adenosine receptor-selective antagonists. Neuropharmacology 36:1157–1165

    Article  CAS  Google Scholar 

  17. Kreckler LM, Wan TC, Ge ZD, Auchampach JA (2006) Adenosine inhibits tumor necrosis factor-alpha release from mouse peritoneal macrophages via A2A and A2B but not the A3 adenosine receptor. J Pharmacol Exp Ther 317(1):172–180

    Article  CAS  Google Scholar 

  18. Kim YC, Ji XD, Jacobson KA (1996) Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) are selective for the human A3 receptor subtype. J Med Chem 39(21):4142–4148

    Article  CAS  Google Scholar 

  19. Yoon MH, Bae HB, Choi JI, Kim SJ, Chung ST, Kim CM (2006) Roles of adenosine receptor subtypes in the antinociceptive effect of intrathecal adenosine in a rat formalin test. Pharmacology 78(1):21–26

    Article  CAS  Google Scholar 

  20. Bar-Yehuda S, Rath-Wolfson L, Del Valle L, Ochaion A, Cohen S, Patoka R, Zozulya G, Barer F, Atar E, Pina-Oviedo S, Perez-Liz G, Castel D, Fishman P (2009) Induction of an anti-inflammatory effect and prevention of cartilage damage in rat knee osteoarthritis by CF101 treatment. Arthritis Rheum 60(10):3061–3071

    Article  CAS  Google Scholar 

  21. Fishman P, Bar-Yehuda S, Madi L, Rath-Wolfson L, Ochaion A, Cohen S (2006) Baharav E (2006) The PI3K-NF-kappaB signal transduction pathway is involved in mediating the anti-inflammatory effect of IB-MECA in adjuvant-induced arthritis. Arthritis Res Ther 8(1):R33

    Article  Google Scholar 

  22. Yoshikawa N, Yamada S, Takeuchi C, Kagota S, Shinozuka K, Kunitomo M, Nakamura K (2008) Cordycepin (3’-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression. Naunyn Schmiedebergs Arch Pharmacol 377(4–6):591–595

    Article  CAS  Google Scholar 

  23. Li AH, Moro S, Melman N, Ji XD, Jacobson KA (1998) Structure-activity relationships and molecular modeling of 3, 5-diacyl-2,4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. J Med Chem 41(17):3186–3201

    Article  CAS  Google Scholar 

  24. Gao Z, Li BS, Day YJ, Linden J (2001) A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol Pharmacol 59(1):76–82

    Article  CAS  Google Scholar 

  25. Miwatashi S, Arikawa Y, Matsumoto T, Uga K, Kanzaki N, Imai YN, Ohkawa S (2008) Synthesis and biological activities of 4-phenyl-5-pyridyl-1,3-thiazole derivatives as selective adenosine A3 antagonists. Chem Pharm Bull (Tokyo) 56(8):1126–1137. https://doi.org/10.1248/cpb.56.1126

    Article  CAS  Google Scholar 

  26. Asano T, Noda Y, Tanaka KI, Yamakawa N, Wada M, Mashimo T, Fukunishi Y, Mizushima T, Takenaga M (2020) A2B adenosine receptor inhibition by the dihydropyridine calcium channel blocker nifedipine involves colonic fluid secretion. Sci Rep 10:3555

    Article  CAS  Google Scholar 

  27. Cheng Y-C, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  Google Scholar 

  28. Carlin JL, Jain S, Gizewski E, Wan TC, Tosh DK, Xiao C, Auchampach JA, Jacobson KA, Gavrilova O, Reitman ML (2017) Hypothermia in mouse is caused by adenosine A1 and A3 receptor agonists and AMP via three distinct mechanisms. Neuropharmacol 114:101–113

    Article  CAS  Google Scholar 

  29. Jiang JL, van Rhee AM, Melman N, Ji XD, Jacobson KA (1996) 6-Phenyl-1,4-dihydropyridine derivatives as potent and selective A3 adenosine receptor antagonists. J Med Chem 39(23):4667–4675

    Article  CAS  Google Scholar 

  30. Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Klotz KN, Leung E, Varani K, Gessi S, Merighi S, Borea PA (1999) Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives as highly potent and selective human A3 adenosine receptor antagonists. J Med Chem 42:4473–4478

    Article  CAS  Google Scholar 

  31. Ozola V, Thorand M, Diekmann M, Qurishi R, Schumacher B, Jacobson KA, Müller CE (2003) 2-Phenylimidazo[2,1–i]purin-5-ones: structure-activity relationships and characterization of potent and selective inverse agonists at human A3 adenosine receptors. Bioorg Med Chem 11(3):347–356

    Article  CAS  Google Scholar 

  32. van Muijlwijk-Koezen JE, Timmerman H, van der Goot H, Menge WM, Von Drabbe F, Künzel J, de Groote M, IJzerman AP, (2000) Isoquinoline and quinazoline urea analogues as antagonists for the human adenosine A3 receptor. J Med Chem 43(11):2227–2238

    Article  Google Scholar 

  33. Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, Huang XP, Norval S, Sassano MF, Shin AI, Webster LA, Simeons FRC, Stojanovski L, Prat A, Seidah NG, Constam DB, Bickerton GR, Read KD, Wetsel WC, Gilbert IH, Roth BL, Hopkins AL (2012) Automated design of ligands to polypharmacological profiles. Nature 492:215–220

    Article  CAS  Google Scholar 

  34. Tosh DK, Salmaso V, Rao H, Bitant A, Fisher CL, Lieberman DI, Vorbrüggen H, Reitman ML, Gavrilova O, Gao ZG, Auchampach JA, Jacobson KA (2020) Truncated (N)-methanocarba nucleosides as partial agonists at mouse and human A3 adenosine receptors: Affinity enhancement by N6-(2-phenylethyl) substitution. J Med Chem 63(8):4334–4348

    Article  CAS  Google Scholar 

  35. Francis JE, Cash WD, Psychoyos S, Ghai G, Wenk P, Friedmann RC, Atkins C, Warren V, Furness P, Hyun JL, Stone GA, Desai M, Williams C (1988) Structure-activity profile of a series of novel triazoloquinazoline adenosine antagonists. J Med Chem 31(5):1014–1020

    Article  CAS  Google Scholar 

  36. Di Angelantonio S, Bertollini C, Piccinin S, Rosito M, Trettel F, Pagani F, Limatola C, Ragozzino D (2015) Basal adenosine modulates the functional properties of AMPA receptors in mouse hippocampal neurons through the activation of A1R A2AR and A3R. Front Cell Neurosci 9:409. https://doi.org/10.3389/fncel.2015.00409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao ZG, Kim SK, Biadatti T, Chen W, Lee K, Barak D, Kim SG, Johnson CR, Jacobson KA (2002) Structural determinants of A3 adenosine receptor activation: nucleoside ligands at the agonist/antagonist boundary. J Med Chem 45(20):4471–4484

    Article  CAS  Google Scholar 

  38. Jeong LS, Pal S, Choe SA, Choi WJ, Jacobson KA, Gao ZG, Klutz AM, Hou X, Kim HO, Lee HW, Lee SK, Tosh DK, Moon HR (2008) Structure-activity relationships of truncated D- and l-4’-thioadenosine derivatives as species-independent A3 adenosine receptor antagonists. J Med Chem 51(20):6609–6613

    Article  CAS  Google Scholar 

  39. Gao ZG, Jacobson KA (2008) Translocation of arrestin induced by human A3 adenosine receptor ligands in an engineered cell line: comparison with G protein-dependent pathways. Pharmacol Res 57(4):303–311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Astrocyte Pharmaceuticals, Cambridge, MA. We thank Ryan Campbell and Harsha Rao (NIDDK, NIH) for technical assistance. We thank Dr. Bryan L. Roth (Univ. North Carolina at Chapel Hill) and National Institute of Mental Health’s Psychoactive Drug Screening Program (Contract # HHSN-271-2008-00025-C) for screening data.

Funding

National Institute of Diabetes and Digestive and Kidney Diseases, Intramural Research Program (grant no. ZIADK031117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhan-Guo Gao or Kenneth A. Jacobson.

Ethics declarations

Ethical approval

Not applicable; no animal studies are included.

Informed consent

Not applicable; no patient studies are included.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 237 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, ZG., Suresh, R.R. & Jacobson, K.A. Pharmacological characterization of DPTN and other selective A3 adenosine receptor antagonists. Purinergic Signalling 17, 737–746 (2021). https://doi.org/10.1007/s11302-021-09823-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09823-5

Keywords

Navigation