Skip to main content

Advertisement

Log in

P2X3 receptors contribute to muscle pain induced by static contraction by a mechanism dependent on neutrophil migration

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

P2X3 receptors are involved with several pain conditions. Muscle pain induced by static contraction has an important socioeconomic impact. Here, we evaluated the involvement of P2X3 receptors on mechanical muscle hyperalgesia and neutrophil migration induced by static contraction in rats. Also, we evaluated whether static contraction would be able to increase muscle levels of TNF-α and IL-1β. Male Wistar rats were pretreated with the selective P2X3 receptor antagonist, A-317491, by intramuscular or intrathecal injection and the static contraction-induced mechanical muscle hyperalgesia was evaluated using the Randall–Selitto test. Neutrophil migration was evaluated by measurement of myeloperoxidase (MPO) kinetic–colorimetric assay and the cytokines TNF-α and IL-1β by enzyme-linked immunosorbent assay. Intramuscular or intrathecal pretreatment with A-317491 prevented static contraction-induced mechanical muscle hyperalgesia. In addition, A-317491 reduced static contraction-induced mechanical muscle hyperalgesia when administered 30 and 60 min of the beginning of static contraction, but not after 30 and 60 min of the end of static contraction. Intramuscular A-317491 also prevented static contraction-induced neutrophil migration. In a period of 24 h, static contraction did not increase muscle levels of TNF-α and IL-1β. These findings demonstrated that mechanical muscle hyperalgesia and neutrophil migration induced by static contraction are modulated by P2X3 receptors expressed on the gastrocnemius muscle and spinal cord dorsal horn. Also, we suggest that P2X3 receptors are important to the development but not to maintenance of muscle hyperalgesia. Therefore, P2X3 receptors can be pointed out as a target to musculoskeletal pain conditions induced by daily or work-related activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Institute of Medicine Committee on Advancing Pain Research C, Education (2011) The National Academies Collection: Reports funded by National Institutes of Health. In: Relieving pain in America: a blueprint for transforming prevention, care, education, and research. National Academies Press (US) National Academy of Sciences., Washington (DC). doi:https://doi.org/10.17226/13172

  2. Cimmino MA, Ferrone C, Cutolo M (2011) Epidemiology of chronic musculoskeletal pain. Best Pract Res Clin Rheumatol 25(2):173–183. https://doi.org/10.1016/j.berh.2010.01.012

    Article  PubMed  Google Scholar 

  3. GBD (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet (London, England) 390(10100):1211–1259. https://doi.org/10.1016/s0140-6736(17)32154-2

    Article  Google Scholar 

  4. Zennaro D, Laubli T, Krebs D, Klipstein A, Krueger H (2003) Continuous, intermitted and sporadic motor unit activity in the trapezius muscle during prolonged computer work. J Electromyogr Kinesiol 13(2):113–124

    Article  CAS  Google Scholar 

  5. Forsman M, Birch L, Zhang Q, Kadefors R (2001) Motor unit recruitment in the trapezius muscle with special reference to coarse arm movements. J Electromyogr Kinesiol 11(3):207–216

    Article  CAS  Google Scholar 

  6. Riley ZA, Terry ME, Mendez-Villanueva A, Litsey JC, Enoka RM (2008) Motor unit recruitment and bursts of activity in the surface electromyogram during a sustained contraction. Muscle Nerve 37(6):745–753. https://doi.org/10.1002/mus.20978

    Article  PubMed  Google Scholar 

  7. Garcia MG, Laubli T, Martin BJ (2015) Long-term muscle fatigue after standing work. Hum Factors 57(7):1162–1173. https://doi.org/10.1177/0018720815590293

    Article  PubMed  Google Scholar 

  8. Kadetoff D, Kosek E (2007) The effects of static muscular contraction on blood pressure, heart rate, pain ratings and pressure pain thresholds in healthy individuals and patients with fibromyalgia. Eur J Pain 11(1):39–47. https://doi.org/10.1016/j.ejpain.2005.12.013

    Article  PubMed  Google Scholar 

  9. Strom V, Roe C, Knardahl S (2009) Work-induced pain, trapezius blood flux, and muscle activity in workers with chronic shoulder and neck pain. Pain 144(1–2):147–155. https://doi.org/10.1016/j.pain.2009.04.002

    Article  PubMed  Google Scholar 

  10. Boix F, Roe C, Rosenborg L, Knardahl S (2005) Kinin peptides in human trapezius muscle during sustained isometric contraction and their relation to pain. Journal of applied physiology (Bethesda, Md : 1985) 98(2):534–540. https://doi.org/10.1152/japplphysiol.01340.2003

    Article  CAS  Google Scholar 

  11. Santos DFSS, Melo Aquino B, Jorge CO, Azambuja G, Schiavuzzo JG, Krimon S, Neves JDS, Parada CA, Oliveira-Fusaro MCG (2017) Muscle pain induced by static contraction in rats is modulated by peripheral inflammatory mechanisms. Neuroscience 358:58–69. https://doi.org/10.1016/j.neuroscience.2017.06.041

    Article  CAS  PubMed  Google Scholar 

  12. Hamilton SG, McMahon SB (2000) ATP as a peripheral mediator of pain. J Auton Nerv Syst 81(1–3):187–194

    Article  CAS  Google Scholar 

  13. Barclay J, Patel S, Dorn G, Wotherspoon G, Moffatt S, Eunson L, Abdel’al S, Natt F, Hall J, Winter J, Bevan S, Wishart W, Fox A, Ganju P (2002) Functional downregulation of P2X3 receptor subunit in rat sensory neurons reveals a significant role in chronic neuropathic and inflammatory pain. J Neurosci 22(18):8139–8147

    Article  CAS  Google Scholar 

  14. Goto T, Iwai H, Kuramoto E, Yamanaka A (2017) Neuropeptides and ATP signaling in the trigeminal ganglion. Jpn Dent Sci Rev 53(4):117–124. https://doi.org/10.1016/j.jdsr.2017.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492

    CAS  PubMed  Google Scholar 

  16. Dunn PM, Zhong Y, Burnstock G (2001) P2X receptors in peripheral neurons. Prog Neurobiol 65(2):107–134

    Article  CAS  Google Scholar 

  17. Bradbury EJ, Burnstock G, McMahon SB (1998) The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci 12(4–5):256–268. https://doi.org/10.1006/mcne.1998.0719

    Article  CAS  PubMed  Google Scholar 

  18. Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485(7397):207–212. https://doi.org/10.1038/nature11010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teixeira JM, Bobinski F, Parada CA, Sluka KA, Tambeli CH (2017) P2X3 and P2X2/3 receptors play a crucial role in articular hyperalgesia development through inflammatory mechanisms in the knee joint experimental synovitis. Mol Neurobiol 54(8):6174–6186. https://doi.org/10.1007/s12035-016-0146-2

    Article  CAS  PubMed  Google Scholar 

  20. Oliveira MC, Parada CA, Veiga MC, Rodrigues LR, Barros SP, Tambeli CH (2005) Evidence for the involvement of endogenous ATP and P2X receptors in TMJ pain. Eur J Pain 9(1):87–93. https://doi.org/10.1016/j.ejpain.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  21. Shinoda M, Ozaki N, Asai H, Nagamine K, Sugiura Y (2005) Changes in P2X3 receptor expression in the trigeminal ganglion following monoarthritis of the temporomandibular joint in rats. Pain 116(1–2):42–51. https://doi.org/10.1016/j.pain.2005.03.042

    Article  CAS  PubMed  Google Scholar 

  22. Oliveira MC, Pelegrini-da-Silva A, Tambeli CH, Parada CA (2009) Peripheral mechanisms underlying the essential role of P2X3,2/3 receptors in the development of inflammatory hyperalgesia. Pain 141(1–2):127–134. https://doi.org/10.1016/j.pain.2008.10.024

    Article  CAS  PubMed  Google Scholar 

  23. de Oliveira Fusaro MC, Pelegrini-da-Silva A, Araldi D, Parada CA, Tambeli CH (2010) P2X3 and P2X2/3 receptors mediate mechanical hyperalgesia induced by bradykinin, but not by pro-inflammatory cytokines, PGE(2) or dopamine. Eur J Pharmacol 649(1–3):177–182. https://doi.org/10.1016/j.ejphar.2010.09.037

    Article  CAS  PubMed  Google Scholar 

  24. Sun S, Qi D, Yang Y, Ji P, Kong J, Wu Q (2016) Association of occlusal interference-induced masseter muscle hyperalgesia and P2X3 receptors in the trigeminal subnucleus caudalis and midbrain periaqueductal gray. Neuroreport 27(4):277–283. https://doi.org/10.1097/wnr.0000000000000533

    Article  CAS  PubMed  Google Scholar 

  25. Noma N, Shinoda M, Honda K, Kiyomoto M, Dezawa K, Nakaya Y, Komiyama O, Imamura Y, Iwata K (2013) Interaction of IL-1beta and P2X(3) receptor in pathologic masseter muscle pain. J Dent Res 92(5):456–460. https://doi.org/10.1177/0022034513483770

    Article  CAS  PubMed  Google Scholar 

  26. Tariba Knežević P, Vukman R, Antonić R, Kovač Z, Uhač I, Simonić-Kocijan S (2016) The role of P2X(3) receptors in bilateral masseter muscle allodynia in rats. Croat Med J 57(6):530–539. https://doi.org/10.3325/cmj.2016.57.530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Makowska A, Panfil C, Ellrich J (2006) ATP induces sustained facilitation of craniofacial nociception through P2X receptors on neck muscle nociceptors in mice. Cephalalgia : an international journal of headache 26(6):697–706. https://doi.org/10.1111/j.1468-2982.2006.01095.x

    Article  CAS  Google Scholar 

  28. Reitz M, Makowska A, Ellrich J (2009) Excitatory and inhibitory purinergic control of neck muscle nociception in anaesthetized mice. Cephalalgia : an international journal of headache 29(1):58–67. https://doi.org/10.1111/j.1468-2982.2008.01700.x

    Article  CAS  Google Scholar 

  29. Mork H, Ashina M, Bendtsen L, Olesen J, Jensen R (2003) Experimental muscle pain and tenderness following infusion of endogenous substances in humans. Eur J Pain 7(2):145–153. https://doi.org/10.1016/s1090-3801(02)00096-4

    Article  CAS  PubMed  Google Scholar 

  30. Dessem D, Ambalavanar R, Evancho M, Moutanni A, Yallampalli C, Bai G (2010) Eccentric muscle contraction and stretching evoke mechanical hyperalgesia and modulate CGRP and P2X(3) expression in a functionally relevant manner. Pain 149(2):284–295. https://doi.org/10.1016/j.pain.2010.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanna RL, Kaufman MP (2003) Role played by purinergic receptors on muscle afferents in evoking the exercise pressor reflex. J Appl Physiol 94(4):1437–1445. https://doi.org/10.1152/japplphysiol.01011.2002

    Article  CAS  PubMed  Google Scholar 

  32. Reinohl J, Hoheisel U, Unger T, Mense S (2003) Adenosine triphosphate as a stimulant for nociceptive and non-nociceptive muscle group IV receptors in the rat. Neurosci Lett 338(1):25–28

    Article  CAS  Google Scholar 

  33. Schiavuzzo JG, Teixeira JM, Melo B, da Silva dos Santos DF, Jorge CO, Oliveira-Fusaro MC, Parada CA (2015) Muscle hyperalgesia induced by peripheral P2X3 receptors is modulated by inflammatory mediators. Neuroscience 285:24–33. https://doi.org/10.1016/j.neuroscience.2014.11.020

    Article  CAS  PubMed  Google Scholar 

  34. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  CAS  Google Scholar 

  35. Rosland JH (1991) The formalin test in mice: the influence of ambient temperature. Pain 45(2):211–216

    Article  CAS  Google Scholar 

  36. Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther 111(4):409–419

    CAS  PubMed  Google Scholar 

  37. Fujii Y, Ozaki N, Taguchi T, Mizumura K, Furukawa K, Sugiura Y (2008) TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness. Pain 140(2):292–304. https://doi.org/10.1016/j.pain.2008.08.013

    Article  CAS  PubMed  Google Scholar 

  38. Takahashi M, Ni Z, Yamashita T, Liang N, Sugawara K, Yahagi S, Kasai T (2006) Excitability changes in human hand motor area induced by voluntary teeth clenching are dependent on muscle properties. Exp Brain Res 171(2):272–277. https://doi.org/10.1007/s00221-006-0430-x

    Article  PubMed  Google Scholar 

  39. Safieh-Garabedian B, Poole S, Allchorne A, Winter J, Woolf CJ (1995) Contribution of interleukin-1 beta to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol 115(7):1265–1275

    Article  CAS  Google Scholar 

  40. Torres-Chavez KE, Sanfins JM, Clemente-Napimoga JT, Pelegrini-Da-Silva A, Parada CA, Fischer L, Tambeli CH (2012) Effect of gonadal steroid hormones on formalin-induced temporomandibular joint inflammation. Eur J Pain 16(2):204–216. https://doi.org/10.1016/j.ejpain.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  41. Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, Van Biesen T, Cartmell J, Bianchi B, Niforatos W, Kage K, Yu H, Mikusa J, Wismer CT, Zhu CZ, Chu K, Lee CH, Stewart AO, Polakowski J, Cox BF, Kowaluk E, Williams M, Sullivan J, Faltynek C (2002) A-317491, a novel potent and selective non-nucleotide antagonist of P2X3and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A 99(26):17179–17184. https://doi.org/10.1073/pnas.252537299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou YF, Ying XM, He XF, Shou SY, Wei JJ, Tai ZX, Shao XM, Liang Y, Fang F, Fang JQ, Jiang YL (2018) Suppressing PKC-dependent membrane P2X3 receptor upregulation in dorsal root ganglia mediated electroacupuncture analgesia in rat painful diabetic neuropathy. Purinergic Signal 14(4):359–369. https://doi.org/10.1007/s11302-018-9617-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hansen RR, Nasser A, Falk S, Baldvinsson SB, Ohlsson PH, Bahl JM, Jarvis MF, Ding M, Heegaard AM (2012) Chronic administration of the selective P2X3, P2X2/3 receptor antagonist, A-317491, transiently attenuates cancer-induced bone pain in mice. Eur J Pharmacol 688(1–3):27–34. https://doi.org/10.1016/j.ejphar.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  44. Ding S, Zhu L, Tian Y, Zhu T, Huang X, Zhang X (2017) P2X3 receptor involvement in endometriosis pain via ERK signaling pathway. PLoS One 12(9):e0184647. https://doi.org/10.1371/journal.pone.0184647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Teixeira JM, Oliveira MC, Nociti FH Jr, Clemente-Napimoga JT, Pelegrini-da-Silva A, Parada CA, Tambeli CH (2010) Involvement of temporomandibular joint P2X3 and P2X2/3 receptors in carrageenan-induced inflammatory hyperalgesia in rats. Eur J Pharmacol 645(1–3):79–85. https://doi.org/10.1016/j.ejphar.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  46. Zhang PA, Zhu HY, Xu QY, Du WJ, Hu S, Xu GY (2018) Sensitization of P2X3 receptors in insular cortex contributes to visceral pain of adult rats with neonatal maternal deprivation. Mol Pain 14:1744806918764731. https://doi.org/10.1177/1744806918764731

    Article  PubMed  PubMed Central  Google Scholar 

  47. Deiteren A, van der Linden L, de Wit A, Ceuleers H, Buckinx R, Timmermans JP, Moreels TG, Pelckmans PA, De Man JG, De Winter BY (2015) P2X3 receptors mediate visceral hypersensitivity during acute chemically-induced colitis and in the post-inflammatory phase via different mechanisms of sensitization. PLoS One 10(4):e0123810. https://doi.org/10.1371/journal.pone.0123810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shinoda M, Ozaki N, Sugiura Y (2008) Involvement of ATP and its receptors on nociception in rat model of masseter muscle pain. Pain 134(1–2):148–157. https://doi.org/10.1016/j.pain.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  49. Qi D, Yang Y, Ji P, Kong J, Wu Q, Si H (2016) Upregulation of the purinergic receptor subtype P2X3 in the trigeminal ganglion is involved in orofacial pain induced by occlusal interference in rats. J Oral Facial Pain Headache 30(1):51–60. https://doi.org/10.11607/ofph.1459

    Article  PubMed  Google Scholar 

  50. Sjogaard G, Lundberg U, Kadefors R (2000) The role of muscle activity and mental load in the development of pain and degenerative processes at the muscle cell level during computer work. Eur J Appl Physiol 83:99–105

    Article  CAS  Google Scholar 

  51. Eijckelhof BHW, Huysmans MA, Bruno Garza JL, Blatter BM, van Dieën JH, Dennerlein JT, van der Beek AJ (2013) The effects of workplace stressors on muscle activity in the neck-shoulder and forearm muscles during computer work: a systematic review and meta-analysis. Eur J Appl Physiol 113(12):2897–2912. https://doi.org/10.1007/s00421-013-2602-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hanvold TN, Wærsted M, Mengshoel AM, Bjertness E, Stigum H, Twisk J, Veiersted KB (2013) The effect of work-related sustained trapezius muscle activity on the development of neck and shoulder pain among young adults. Scand J Work Environ Health 39(4):390–400. https://doi.org/10.5271/sjweh.3357

    Article  PubMed  Google Scholar 

  53. Valachi B, Valachi K (2003) Mechanisms leading to musculoskeletal disorders in dentistry. J Am Dent Assoc 134:1344–1350

    Article  Google Scholar 

  54. Baum K, Essfeld D (1999) Origin of back pain during bedrest: a new hypothesis. Eur J Med Res 4:389–393

    CAS  PubMed  Google Scholar 

  55. Roe C, Knardahl S, Vollestad NK (2000) Muscle activation during isometric contractions in workers with unilateral shoulder myalgia. J Musculoskelet Pain 8:57–73

    Article  Google Scholar 

  56. Umeda M, Corbin LW, Maluf KS (2015) Examination of contraction-induced muscle pain as a behavioral correlate of physical activity in women with and without fibromyalgia. Disabil Rehabil 37:1864–1869

    Article  Google Scholar 

  57. Fabbretti E (2013) ATP P2X3 receptors and neuronal sensitization. Front Cell Neurosci 7:236. https://doi.org/10.3389/fncel.2013.00236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ford AP (2012) In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization. Purinergic Signal 8:3–26. https://doi.org/10.1007/s11302-011-9271-6

    Article  CAS  PubMed  Google Scholar 

  59. Lin J, Li G, Den X, Xu C, Liu S, Gao Y, Liu H, Zhang J, Li X, Liang S (2010) VEGF and its receptor-2 involved in neuropathic pain transmission mediated by P2X2(/)3 receptor of primary sensory neurons. Brain Res Bull 83(5):284–291. https://doi.org/10.1016/j.brainresbull.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  60. Xu J, Chu KL, Brederson JD, Jarvis MF, McGaraughty S (2012) Spontaneous firing and evoked responses of spinal nociceptive neurons are attenuated by blockade of P2X3 and P2X2/3 receptors in inflamed rats. J Neurosci Res 90(8):1597–1606. https://doi.org/10.1002/jnr.23042

    Article  CAS  PubMed  Google Scholar 

  61. Xiang Z, Xiong Y, Yan N, Li X, Mao Y, Ni X, He C, LaMotte RH, Burnstock G, Sun J (2008) Functional up-regulation of P2X 3 receptors in the chronically compressed dorsal root ganglion. Pain 140(1):23–34. https://doi.org/10.1016/j.pain.2008.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leng C, Chen L, Gong X, Ma B, Gan W, Si Y, Xiao H, Li C (2018) Upregulation of P2X2 and P2X3 receptors in rats with hyperalgesia induced by heroin withdrawal. Neuroreport 29(8):678–684. https://doi.org/10.1097/WNR.0000000000001018

    Article  CAS  PubMed  Google Scholar 

  63. Liu M, Yang H, Fang D, Yang JJ, Cai J, Wan Y, Chui DH, Han JS, Xing GG (2013) Upregulation of P2X3 receptors by neuronal calcium sensor protein VILIP-1 in dorsal root ganglions contributes to the bone cancer pain in rats. Pain 154(9):1551–1568. https://doi.org/10.1016/j.pain.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  64. Tao J, Liu L, Fan Y, Wang M, Li L, Zou L, Yuan H, Shi L, Yang R, Liang S, Liu S (2019) Role of hesperidin in P2X3 receptor-mediated neuropathic pain in the dorsal root ganglia. Int J Neurosci 9:1–10. https://doi.org/10.1080/00207454.2019.1567512

    Article  CAS  Google Scholar 

  65. McGaraughty S, Wismer CT, Zhu CZ, Mikusa J, Honore P, Chu KL, Lee CH, Faltynek CR, Jarvis MF (2003) Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol 140(8):1381–1388. https://doi.org/10.1038/sj.bjp.0705574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fukui M, Nakagawa T, Minami M, Satoh M, Kaneko S (2006) Inhibitory role of supraspinal P2X3/P2X2/3 subtypes on nociception in rats. Mol Pain 5(2):19

    Google Scholar 

  67. Jung YH, Kim YO, Lin H, Cho JH, Park JH, Lee SD, Bae J, Kang KM, Kim YG, Pae AN, Ko H, Park CS, Yoon MH, Kim YC (2017) Discovery of potent antiallodynic agents for neuropathic pain targeting P2X3 receptors. ACS Chem Neurosci 8(7):1465–1478. https://doi.org/10.1021/acschemneuro.6b00401

    Article  CAS  PubMed  Google Scholar 

  68. Pizza FX, Peterson JM, Baas JH, Koh TJ (2005) Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J Physiol 562(Pt 3):899–913

    Article  CAS  Google Scholar 

  69. Yoshida S, Hagiwara Y, Tsuchiya M, Shinoda M, Koide M, Hatakeyama H, Chaweewannakorn C, Yano T, Sogi Y, Itaya N, Sekiguchi T, Yabe Y, Sasaki K, Kanzaki M, Itoi E (2018) Involvement of neutrophils and interleukin-18 in nociception in a mouse model of muscle pain. Mol Pain 14:1744806918757286. https://doi.org/10.1177/1744806918757286

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kawanishi N, Mizokami T, Niihara H, Yada K, Suzuki K (2016) Neutrophil depletion attenuates muscle injury after exhaustive exercise. Med Sci Sports Exerc 48(10):1917–1924. https://doi.org/10.1249/MSS.0000000000000980

    Article  CAS  PubMed  Google Scholar 

  71. Cunha TM, Verri WA Jr, Schivo IR, Napimoga MH, Parada CA, Poole S, Teixeira MM, Ferreira SH, Cunha FQ (2008) Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol 83(4):824–832. https://doi.org/10.1189/jlb.0907654

    Article  CAS  PubMed  Google Scholar 

  72. Loram LC, Fuller A, Fick LG, Cartmell T, Poole S, Mitchell D (2007) Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. J Pain 8(2):127–136. https://doi.org/10.1016/j.jpain.2006.06.010

    Article  CAS  PubMed  Google Scholar 

  73. Babault N, Desbrosses K, Fabre MS, Michaut A, Pousson M (2006) Neuromuscular fatigue development during maximal concentric and isometric knee extensions. J Appl Physiol 100(3):780–785. https://doi.org/10.1152/japplphysiol.00737.2005

    Article  PubMed  Google Scholar 

  74. Kahn JF, Monod H (1989) Fatigue induced by static work. Ergonomics 32(7):839–846. https://doi.org/10.1080/00140138908966846

    Article  CAS  PubMed  Google Scholar 

  75. Place N, Lepers R, Deley G, Millet GY (2004) Time course of neuromuscular alterations during a prolonged running exercise. Med Sci Sports Exerc 36(8):1347–1356

    Article  Google Scholar 

  76. Kilbom A, Persson J (1982) Leg blood flow during static exercise. Eur J Appl Physiol Occup Physiol 48(3):367–377

    Article  CAS  Google Scholar 

  77. Osada T, Rädegran G (2016) Difference in muscle blood flow fluctuations between dynamic and static thigh muscle contractions: how to evaluate exercise blood flow by Doppler ultrasound. Phys Med Rehabil Res 1. doi:https://doi.org/10.15761/PMRR.1000128

  78. Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2010) Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. J Appl Physiol 109(4):966–976. https://doi.org/10.1152/japplphysiol.00462.2010

    Article  PubMed  PubMed Central  Google Scholar 

  79. Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2011) Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans. J Physiol 589(Pt 21):5299–5309. https://doi.org/10.1113/jphysiol.2011.213769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Amann M, Runnels S, Morgan DE, Trinity JD, Fjeldstad AS, Wray DW, Reese VR, Richardson RS (2011) On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans. J Physiol 589 (Pt 15:3855–3866. https://doi.org/10.1113/jphysiol.2011.209353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA (2006) Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol 575(Pt 3):937–952. https://doi.org/10.1113/jphysiol.2006.113936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and by the Sao Paulo Research Foundation (FAPESP) (grant number 2011/11064-4; 2013/23448-7; 2012/10402-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Claudia Goncalves Oliveira-Fusaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Male albino Wistar rats (200–250 g) from CEMIB (Multidisciplinary Center for Biological Research) UNICAMP were used and all the procedures followed the guidelines on using laboratory animals from IASP [34] and approved by the Committee on Animal Research of the State University of Campinas (license number 2448-1).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo Aquino, B., da Silva dos Santos, D.F., Jorge, C.O. et al. P2X3 receptors contribute to muscle pain induced by static contraction by a mechanism dependent on neutrophil migration. Purinergic Signalling 15, 167–175 (2019). https://doi.org/10.1007/s11302-019-09659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-019-09659-0

Keywords

Navigation