Skip to main content

Advertisement

Log in

P2X7 receptor of rat dorsal root ganglia is involved in the effect of moxibustion on visceral hyperalgesia

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Irritable bowel syndrome (IBS) and inflammatory bowel disease often display visceral hypersensitivity. Visceral nociceptors after inflammatory stimulation generate afferent nerve impulses through dorsal root ganglia (DRG) transmitting to the central nervous system. ATP and its activated-purinergic 2X7 (P2X7) receptor play an important role in the transmission of nociceptive signal. Purinergic signaling is involved in the sensory transmission of visceral pain. Moxibustion is a therapy applying ignited mugwort directly or indirectly at acupuncture points or other specific parts of the body to treat diseases. Heat-sensitive acupoints are the corresponding points extremely sensitive to moxa heat in disease conditions. In this study, we aimed to investigate the relationship between the analgesic effect of moxibustion on a heat-sensitive acupoint “Dachangshu” and the expression levels of P2X7 receptor in rat DRG after chronic inflammatory stimulation of colorectal distension. Heat-sensitive moxibustion at Dachangshu acupoint inhibited the nociceptive signal transmission by decreasing the upregulated expression levels of P2X7 mRNA and protein in DRG induced by visceral pain, and reversed the abnormal expression of glial fibrillary acidic protein (GFAP, a marker of satellite glial cells) in DRG. Consequently, abdominal withdrawal reflex (AWR) score in a visceral pain model was reduced, and the pain threshold was elevated. Therefore, heat-sensitive moxibustion at Dachangshu acupoint can produce a therapeutic effect on IBS via inhibiting the nociceptive transmission mediated by upregulated P2X7 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IBS:

Irritable bowel syndrome

ATP:

Adenosine triphosphate

CRD:

Colorectal distention

VHM:

Visceral hyperalgesic model

AWR:

Abdominal withdrawal reflex

HSM:

Heat-sensitive moxibustion

DRG:

Dorsal root ganglia

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

GFAP:

Glial fibrillary acidic protein

SDS:

Sodium dodecylsulfate

HRP:

Horseradish peroxidase

SGC:

Satellite glial cells

References

  1. Bradesi S, Herman J, Mayer EA (2008) Visceral analgesics: drugs with a great potential in functional disorders? Curr Opin Pharmacol 8:697–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Dunlop SP, Jenkins D, Spiller RC (2003) Distinctive clinical, psychological, and histological features of postinfective irritable bowel syndrome. Am J Gastroenterol 98:1578–1583

    Article  PubMed  Google Scholar 

  3. Nozu T, Okumura T (2011) Visceral sensation and irritable bowel syndrome; with special reference to comparison with functional abdominal pain syndrome. J Gastroenterol Hepatol 26(Suppl 3):122–127

    Article  PubMed  Google Scholar 

  4. Blackshaw LA, Brookes SJ, Grundy D, Schemann M (2007) Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 19(Suppl 1):1–19

    Article  CAS  PubMed  Google Scholar 

  5. Cervero F (1994) Sensory innervation of the viscera: peripheral basis of visceral pain. Physiol Rev 74:95–138

    CAS  PubMed  Google Scholar 

  6. Burnstock G (2012) Discovery of purinergic signalling, the initial resistance and current explosion of interest. Brit J Pharmacol 167:238–255

    Article  CAS  Google Scholar 

  7. Burnstock G (2013) Purinergic mechanisms and pain—an update. Eur J Pharmacol 716:24–40

    Article  CAS  PubMed  Google Scholar 

  8. Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274

    Article  CAS  PubMed  Google Scholar 

  9. Kong FJ, Liu SM, Xu CS, Liu J, Li GD, Li GL, Gao Y, Lin H, Tu GH, Peng HY, Qiu SY, Fan B, Zhu QC, Yu SC, Zheng CR, Liang S (2013) Electrophysiological studies of upregulated P2X7 receptors in rat superior cervical ganglia after myocardial ischemic injury. Neurochem Int 63:230–237

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Li GL, Peng HY, Tu GH, Kong FJ, Li GL, Liu SM, Gao Y, Xu H, Qiu SY, Fan B, Zhu QC, Yu SC, Zheng CR, Wu B, Li GD, Liang SD (2013) Sensory-sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor. Purinergic Signal 9:463–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Tu GH, Li GL, Peng HY, Hu J, Liu J, Kong FJ, Liu SM, Gao Y, Xu CS, Xu XL, Qiu SY, Fan B, Zhu QC, Yu SC, Zheng CR, Wu B, Peng LC, Song MM, Wu Q, Liang SD (2013) P2X7 inhibition in stellate ganglia prevents the increased sympathoexcitatory reflex via sensory-sympathetic coupling induced by myocardial ischemic injury. Brain Res Bull 96:71–85

    Article  CAS  PubMed  Google Scholar 

  12. Xu H, Wu B, Jiang FQ, Xiong SH, Zhang BP, Li GL, Liu SM, Gao Y, Xu CS, Tu GH, Peng HY, Liang SD, Xiong HG (2013) High fatty acids modulate P2X7 expression and IL-6 release via the p38 MAPK pathway in PC12 cells. Brain Res Bull 94:63–70

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Li X, Gao Y, Guo GH, Xu CS, Li GL, Liu SM, Tu GH, Peng HY, Qiu SY, Fan B, Zhu QC, Yu SC, Zheng CR, Liang SD (2013) Effects of puerarin on the inflammatory role of burn-related procedural pain mediated by P2X7 receptors. Burn 39:610–618

    Article  Google Scholar 

  14. Burnstock G (2009) Purinergic mechanosensory transduction and visceral pain. Mol Pain 5:69

    Article  PubMed Central  PubMed  Google Scholar 

  15. Marques CC, Castelo-Branco MT, Pacheco RG, Buongusto F, do Rosário A Jr, Schanaider A, Coutinho-Silva R, de Souza HSP (2014) Prophylactic systemic P2X7 receptor blockade prevents experimental colitis. Biochim Biophys Acta 1842:65–78

    Article  CAS  PubMed  Google Scholar 

  16. Liu B, Hu YM, Tenner SM (2000) A randomized controlled trial of acupuncture for irritable bowel syndrome. Am J Gastroenterol 95:2498

    Article  Google Scholar 

  17. Zhou E, Liu H, Wu H, Shi Y, Wang X, Tan L, Yao L, Zhong Y, Jiang Y, Zhang L (2009) Suspended moxibustion relieves chronic visceral hyperalgesia via serotonin pathway in the colon. Neurosci Lett 451:144–147

    Article  CAS  PubMed  Google Scholar 

  18. Kim SY, Chae Y, Lee SM, Lee H, Park HJ (2011) The effectiveness of moxibustion: an overview during 10 years. Evid-Based Compl Alt 19 pp. [Article ID 306515]

  19. Xiong X, Liu W, Yang X, Feng B, Wang J (2014) Moxibustion for essential hypertension. Complement Ther Med 22:187–195

    Article  CAS  PubMed  Google Scholar 

  20. Gao XY, Chong CY, Zhang SP, Cheng KWE, Zhu B (2012) Temperature and safety profiles of needle-warming techniques in acupuncture and moxibustion. Evid-Based Compl Alt 6 pp. [Article ID 168393]

  21. Lee MS, Kang JW, Ernst E (2010) Does moxibustion work? An overview of systematic reviews. BMC Res Notes 3:284

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lin JG, Chen YH (2011) The mechanistic studies of acupuncture and moxibustion in Taiwan. Chin J Integr Med 17:177–186

    Article  PubMed  Google Scholar 

  23. Chen RX, Kang MF (2006) A new therapy: moxibustion on heat-sensitive acupoint. People’s Medical Publishing House, Beijing

    Google Scholar 

  24. Hu D, Kang M, Xiong J, Deng P (2012) Irritable bowel syndrome with diarrhea (1BS-D) treated with moxibustion on heat-sensitive acupoints: a randomized controlled trial. World J Acupunct-Moxibustion (WJAM) 22:1–4

    Article  Google Scholar 

  25. Al-Chaer ED, Kawasaki M, Pasricha PJ (2000) A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 119:1276–1285

    Article  CAS  PubMed  Google Scholar 

  26. Huang LX, Zhao JS, Han Z (2006) Nomenclature and location of acupoints. GB/T 12346–2006. China Zhijian Publishing House 11, Beijing

    Google Scholar 

  27. Sun YJ, Wu YC, Zhang JF, Zhang P, Tang ZY (2013) Effects of electroacupuncture on muscle state and electrophysiological changes in rabbits with lumbar nerve root compression. Chin J Integr Med 19:446–452

    Article  PubMed  Google Scholar 

  28. Chen RX, Chen MR, Kang MF (2009) Practical reading of heat-sensitization moxibustion. People’s Medical Publishing House 4, Beijing

    Google Scholar 

  29. Xiao AJ, Chen RX, Kang MF, Tan SH (2012) Heat-sensitive moxibustion attenuates the inflammation after focal cerebral ischemia/reperfusion injury. Neural Regen Res 7:2600–2606

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Hucho T, Levine JD (2007) Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55(3):365–376

    Article  CAS  PubMed  Google Scholar 

  31. Donnelly-Roberts DL, Jarvis MF (2007) Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Brit J Pharmacol 151:571–579

    Article  CAS  Google Scholar 

  32. Skaper SD, Debetto P, Giusti P (2010) The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 24:337–345

    Article  CAS  PubMed  Google Scholar 

  33. Sperlagh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346

    Article  CAS  PubMed  Google Scholar 

  34. Antonioli L, Colucci R, Pellegrini C, Giustarini G, Tuccori M, Blandizzi C, Fornai M (2013) The role of purinergic pathways in the pathophysiology of gut diseases: pharmacological modulation and potential therapeutic applications. Pharmacol Ther 139:157–188

    Article  CAS  PubMed  Google Scholar 

  35. Kurashima Y, Amiya T, Nochi T, Fujisawa K, Haraguchi T, Iba H, Tsutsui H, Sato S, Nakajima S, Iijima H, Kubo M, Kunisawa J, Kiyono H (2012) Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 3:1034

    Article  PubMed Central  PubMed  Google Scholar 

  36. Roberts JA, Lukewich MK, Sharkey KA, Furness JB, Mawe GM, Lomax AE (2012) The roles of purinergic signaling during gastrointestinal inflammation. Curr Opin Pharmacol 12:659–666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Dublin P, Hanani M (2007) Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav Immun 21:592–598

    Article  CAS  PubMed  Google Scholar 

  38. Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Rev 48:457–476

    Article  CAS  PubMed  Google Scholar 

  39. Pannese E (2010) The structure of the perineuronal sheath of satellite glial cells (SGCs) in sensory ganglia. Neuron Glia Biol 6:3–10

    Article  PubMed  Google Scholar 

  40. Takeda M, Takahashi M, Matsumoto S (2009) Contribution of the activation of satellite glia in sensory ganglia to pathological pain. Neurosci Biobehav R 33:784–792

    Article  CAS  Google Scholar 

  41. Jarvis MF (2010) The neural-glial purinergic receptor ensemble in chronic pain states. Trends Neurosci 33:48–57

    Article  CAS  PubMed  Google Scholar 

  42. Kushnir R, Cherkas PS, Hanani M (2011) Peripheral inflammation upregulates P2X receptor expression in satellite glial cells of mouse trigeminal ganglia: a calcium imaging study. Neuropharmacology 61:739–746

    Article  CAS  PubMed  Google Scholar 

  43. Liu FY, Sun YN, Wang FT, Li Q, Su L, Zhao ZF, Meng XL, Zhao H, Wu X, Sun Q, Xing GG, Wan Y (2012) Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Res 1427:65–77

    Article  CAS  PubMed  Google Scholar 

  44. Zhou EH, Wang XM, Ding GH, Wu HG, Qi L, Liu HR, Zhang SJ (2011) Suspended moxibustion relieves chronic visceral hyperalgesia and decreases hypothalamic corticotropin-releasing hormone levels. World J Gastroenterol 17:662–665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants (Nos: 81171184, 31060139, 30860086, 30860333, 30660048, 81460200, and 81200853) from the National Natural Science Foundation of China, the grants (Nos: 2010BSA09500 and 20111BBG70009-1) from the Technology Pedestal and Society Development Project of Jiangxi Province, the grant (Nos.: 20142BAB205028 and 20142BAB215027) from the Natural Science Foundation of Jiangxi Province, the second batch of Jiangxi province “Gan Po excellence talent 555 project”-leading talent project, the grant (No: 2009CB522902) from National Basic Research Program of China, and the grants (No: GJJ13155 and GJJ14319) from the Educational Department of Jiangxi Province. GL’s research was supported by the NMRC of Singapore (NMRC/CIRG/1334/2012).

Conflict of interest

The authors declare that there are no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangdong Liang.

Additional information

Shuangmei Liu, Qingming Shi, and Qicheng Zhu are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Shi, Q., Zhu, Q. et al. P2X7 receptor of rat dorsal root ganglia is involved in the effect of moxibustion on visceral hyperalgesia. Purinergic Signalling 11, 161–169 (2015). https://doi.org/10.1007/s11302-014-9439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-014-9439-y

Keywords

Navigation