Skip to main content
Log in

Alanine substitution scanning of pannexin1 reveals amino acid residues mediating ATP sensitivity

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Pannexin1 is a prime candidate to represent an ATP release channel. The pannexin1 channel can be activated by extracellular ATP through purinergic receptors P2X7 or P2Y. Recent studies have shown that the Pannexin1 channel is inhibited by its own permeant ion, ATP, and also by P2X7 receptor agonists and antagonists. However, the dose dependence of this inhibition indicated that significant inhibition was prominent at ATP concentrations higher than required for activation of purinergic receptors, including P2X7 and P2Y2. The inhibitory effect of ATP is largely decreased when R75 in the first extracellular loop of Pannexin1 is mutated to alanine, indicating that ATP regulates this channel presumably through binding. To further investigate the structural property of the putative ATP binding site, we performed alanine-scanning mutagenesis of the extracellular loops of pannexin1. Mutations on W74, S237, S240, I247 and L266 in the extracellular loops 1 and 2 severely impaired the inhibitory effect of BzATP, indicating that they might be the essential amino acids in the putative binding site. Mutations on R75, S82, S93, L94, D241, S249, P259 and I267 moderately (≥50%) decreased BzATP sensitivity, suggesting their supporting roles in the binding. Mutations of other residues did not change the BzATP potency compared to wild-type except for some nonfunctional mutants. These data demonstrate that several amino acid residues on the extracellular loops of Pannexin1 mediate ATP sensitivity. Cells expressing mutant Panx1W74A exhibited an enhanced release of ATP, consistent with the removal of a negative feedback loop controlling ATP release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Panx1:

Pannexin1

BzATP:

2′(3′)-O-(4-Benzoylbenzoyl)adenosine-5′-triphosphate

BBG:

Brilliant Blue G

MTSET:

[2-(trimethylammonium)ethyl] methanethiosulfonate bromide

MTSEA:

2-aminoethyl methanethiosulfonate hydrobromide

MTSES:

Sodium 2-sulfonatoethyl methanethiosulfonate

MBB:

Maleimidobutyryl-biocytin

CBX:

Carbenoxolone

References

  1. Dahl G, Locovei S (2006) Pannexin: to gap or not to gap, is that a question? IUBMB Life 58:409–419

    Article  PubMed  CAS  Google Scholar 

  2. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    Article  PubMed  CAS  Google Scholar 

  3. Ransford GA, Fregien N, Qiu F, Dahl G, Conner GE, Salathe M (2009) Pannexin 1 contributes to ATP release in airway epithelia. Am J Respir Cell Mol Biol 41:525–534

    Article  PubMed  CAS  Google Scholar 

  4. Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009) Pannexin 1: the molecular substrate of astrocyte "hemichannels". J Neurosci 29:7092–7097

    Article  PubMed  CAS  Google Scholar 

  5. Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci U S A 103:7655–7659

    Article  PubMed  CAS  Google Scholar 

  6. Pelegrin P, Surprenant A (2006). Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X(7) receptor. Embo J

  7. Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26:433–443

    Article  PubMed  CAS  Google Scholar 

  8. Marina-Garcia N, Franchi L, Kim YG, Miller D, McDonald C, Boons GJ, Nunez G (2008) Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J Immunol 180:4050–4057

    PubMed  CAS  Google Scholar 

  9. Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex. FEBS Lett 581:483–488

    Article  PubMed  CAS  Google Scholar 

  10. Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284:18143–18151

    Article  PubMed  CAS  Google Scholar 

  11. Drury AN, Szent-Gyorgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237

    PubMed  CAS  Google Scholar 

  12. Burnstock G (1971) Neural nomenclature. Nature 229:282–283

    Article  PubMed  CAS  Google Scholar 

  13. Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580:239–244

    Article  PubMed  CAS  Google Scholar 

  14. Scemes E, Suadicani SO, Dahl G, Spray DC (2007) Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol 3:199–208

    Article  PubMed  Google Scholar 

  15. Wang J, Ma M, Locovei S, Keane RW, Dahl G (2007) Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol 293:C1112–C1119

    Article  PubMed  CAS  Google Scholar 

  16. Silverman W, Locovei S, Dahl G (2008) Probenecid, a gout remedy, inhibits pannexin 1 channels. Am J Physiol Cell Physiol 295:C761–C767

    Article  PubMed  CAS  Google Scholar 

  17. Qu, Y. et al. (2011). Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol

  18. Qiu F, Dahl G (2009) A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP. Am J Physiol Cell Physiol 296:C250–C255

    Article  PubMed  CAS  Google Scholar 

  19. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A 100:13644–13649

    Article  PubMed  CAS  Google Scholar 

  20. Wang J, Dahl G (2010) SCAM analysis of Panx1 suggests a peculiar pore structure. J Gen Physiol 136:515–527

    Article  PubMed  CAS  Google Scholar 

  21. Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, Tsukihara T (2009) Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature 458:597–602

    Article  PubMed  CAS  Google Scholar 

  22. Dahl G, Pfahnl A (2001) Mutagenesis to study channel structure. Methods Mol Biol 154:251–268

    PubMed  CAS  Google Scholar 

  23. Williams N, Coleman PS (1982) Exploring the adenine nucleotide binding sites on mitochondrial F1-ATPase with a new photoaffinity probe, 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate. J Biol Chem 257:2834–2841

    PubMed  CAS  Google Scholar 

  24. Ma W, Hui H, Pelegrin P, Surprenant A (2009) Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J Pharmacol Exp Ther 328:409–418

    Article  PubMed  CAS  Google Scholar 

  25. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  26. Hwang TC, Sheppard DN (2009) Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation. J Physiol 587:2151–2161

    Article  PubMed  CAS  Google Scholar 

  27. Roberts JA, Evans RJ (2004) ATP binding at human P2X1 receptors. Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists. J Biol Chem 279:9043–9055

    Article  PubMed  CAS  Google Scholar 

  28. Ennion S, Hagan S, Evans RJ (2000) The role of positively charged amino acids in ATP recognition by human P2X1 receptors. J Biol Chem 275:35656

    Article  PubMed  CAS  Google Scholar 

  29. Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460:592–598

    Article  PubMed  CAS  Google Scholar 

  30. North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40:563–580

    Article  PubMed  CAS  Google Scholar 

  31. Czajkowski C, Karlin A (1995) Structure of the nicotinic receptor acetylcholine-binding site. Identification of acidic residues in the delta subunit within 0.9 nm of the 5 alpha subunit-binding. J Biol Chem 270:3160–3164

    Article  PubMed  CAS  Google Scholar 

  32. Smith GB, Olsen RW (1995) Functional domains of GABAA receptors. Trends Pharmacol Sci 16:162–168

    Article  PubMed  CAS  Google Scholar 

  33. Chekeni FB et al (2010) Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 467:863–867

    Article  PubMed  CAS  Google Scholar 

  34. Thompson RJ, Jackson MF, Olah ME, Rungta RL, Hines DJ, Beazely MA, MacDonald JF, MacVicar BA (2008) Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322:1555–1559

    Article  PubMed  CAS  Google Scholar 

  35. Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295:C752–C760

    Article  PubMed  CAS  Google Scholar 

  36. Sridharan M, Adderley SP, Bowles EA, Egan TM, Stephenson AH, Ellsworth ML, Sprague RS (2010) Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes. Am J Physiol Heart Circ Physiol 299:H1146–H1152

    Article  PubMed  CAS  Google Scholar 

  37. Seminario-Vidal, L. et al. (2011). RHO signaling regulates pannexin 1-mediated ATP release from airway epithelia. J Biol Chem

Download references

Acknowledgments

We thank Dr. Peter Larsson for reading an early version of the manuscript. This work was supported by NIH grant GM 48610.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Dahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, F., Wang, J. & Dahl, G. Alanine substitution scanning of pannexin1 reveals amino acid residues mediating ATP sensitivity. Purinergic Signalling 8, 81–90 (2012). https://doi.org/10.1007/s11302-011-9263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9263-6

Keywords