Skip to main content
Log in

Level-Scheduling bei Variantenfließfertigung: Klassifikation, Literaturüberblick und Modellkritik

  • State-of-the-Art-Artikel
  • Published:
Journal für Betriebswirtschaft Aims and scope Submit manuscript

Zusammenfassung

Viele Hersteller von Verbrauchsgütern sehen sich heutzutage einer enormen Variantenvielfalt gegenüber, die sie auf ihren Fließsystemen produzieren müssen. So bietet etwa BMW seine Automobile in 1032 theoretisch möglichen Varianten an. Um nicht die marktseitigen Vorteile dieser Variantenvielfalt durch ineffiziente Produktionsabläufe aufzuzehren, muss die Produktionsplanung diesem Phänomen angemessen Rechnung tragen. Ein wichtiges Aufgabengebiet ist in diesem Zusammenhang die Reihenfolgeplanung, die über die Fertigungsfolge der Varianten auf einem Fließsystem entscheidet. Im Zuge des ,,Toyota Production System“ hat sich dazu das sog. Level-Scheduling etabliert, welches darauf zielt, den durch die Fertigungsfolge der Varianten induzierten Materialbedarf möglichst gleichmäßig auf den Planungshorizont zu verteilen, um so eine Just-in-Time-Versorgung der Linie ohne größere Lagerbestände zu ermöglichen. Dieser Aufsatz referiert und klassifiziert die zahlreichen Veröffentlichungen zum Level-Scheduling und will vor allem deren Eignung für den Praxiseinsatz kritisch hinterfragen.

Abstract

Manufacturers of consumer goods nowadays have to cope with an enormous product variety, which is to be produced on their assembly systems. Car manufacturer BMW for example, offers its automobiles in 1032 theoretically possible variations. A sophisticated production planning is essential, so that the market benefits of a diversified product portfolio are not spoiled by inefficient production processes. A critical issue in this context is the short-term sequencing, determining the order in which models are processed on the assembly system. As part of the “Toyota Production System” the so called level-scheduling has established, which aims at evenly smoothing the material requirements induced by the production sequence over time, so that a just-in-time supply of material is enabled and inventories are minimized. This paper provides a systematic overview on the wide range of publications on level scheduling and controversially discusses its appropriateness for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Aigbedo H (2000) Some structural properties for the just-in-time level schedule problem. Prod Plann Control 11:357–362

    Article  Google Scholar 

  2. Aigbedo H, Monden Y (1996) A simulation analysis for two-level sequence-scheduling for just-in-time (JIT) mixed-model assembly lines. Int J Prod Res 34:3107–3124

    Google Scholar 

  3. Aigbedo H, Monden Y (1997) A parametric procedure for multicriterion sequence scheduling for just-in-time mixed-model assembly lines. Int J Prod Res 35:2543–2564

    Article  Google Scholar 

  4. Balakrishnan A, Vanderbeck F (1999) A tactical planning model for mixed-model electronics assembly operations. Oper Res 47:395–409

    Google Scholar 

  5. Balinski M, Shahidi N (1998) A simple approach to the production rate variation problem via axiomatics. Oper Res Lett 22:129–135

    Article  Google Scholar 

  6. Bard JF, Shtub A, Joshi SB (1994) Sequencing mixed-model assembly lines to level parts usage and minimize line length. Int J Prod Res 32:2431–2454

    Google Scholar 

  7. Bautista J, Companys R, Corominas A (1996a) Heuristics and exact algorithms for solving the Monden problem. Eur J Oper Res 88:101–113

    Article  Google Scholar 

  8. Bautista J, Companys R, Corominas A (1996b) A note on the relation between the product rate variantion (PRV) and the apportionment problem. J Oper Res Soc 47:1410–1414

    Article  Google Scholar 

  9. Boysen N (2005a) Variantenfließfertigung, 1. Auflage. Deutscher UniversitätsVerlag, Wiesbaden

    Google Scholar 

  10. Boysen N (2005b) Reihenfolgeplanung bei Variantenfließfertigung: Ein integrativer Ansatz. Zeitschrift für Betriebswirtschaft 75:135–156

    Google Scholar 

  11. Boysen N, Fliedner M, Scholl A (2006a) Produktionsplanung bei Variantenfließfertigung: Planungshierarchie und Hierarchische Planung, Jenaer Schriften zur Wirtschaftswissenschaft 23/2006

  12. Boysen N, Fliedner M, Scholl A (2006b) A classification of assembly line balancing problems, Erscheint in: Eur J Oper Res, doi:10.1016/j.ejor.2006.10.010

  13. Brauner N, Crama Y (2004) The maximum deviation just-in-time scheduling problem. Discrete App Math 134:25–50

    Article  Google Scholar 

  14. Brucker P, Drexl A, Möhring RH, Neumann K, Pesch E (1999) Resource-constrained project scheduling: Notation, classification, models and methods. Eur J Oper Res 112:3–41

    Article  Google Scholar 

  15. Buzacott JA, Shanthikumar JG (1993) Stochastic models of manufacturing systems, 1. Auflage. Prentice Hall, Englewood Cliffs

    Google Scholar 

  16. Cakir A, Inman RR (1993) Modified goal chasing for products with non-zero/one bills of materials. Int J Prod Res 31:107–115

    Google Scholar 

  17. Cheng L, Ding FY (1996) Modifying mixed-model assembly line sequencing methods to consider weighted variations for just-in-time production systems. IIE Trans 28:919–927

    Google Scholar 

  18. Dahmala TN, Kubiak W (2005) A brief survey of just-in-time sequencing for mixed-model systems. Int J Oper Res 2:38–47

    Google Scholar 

  19. Decker M (1993) Variantenfließfertigung, 1. Auflage. Physica-Verlag, Heidelberg

    Google Scholar 

  20. Ding F-Y, Cheng L (1993a) A simple sequencing algorithm for mixed-model assembly lines in just-in-time production systems. Oper Res Lett 13:27–36

    Article  Google Scholar 

  21. Ding F-Y, Cheng L (1993b) An effective mixed-model assembly line sequencing heuristic for Just-In-Time production systems. J Oper Manage 11:45–65

    Article  Google Scholar 

  22. Domschke W (1997) Logistik – Band 2: Rundreisen und Touren, 4. Auflage. Oldenbourg, München

    Google Scholar 

  23. Domschke W, Drexl A (2005) Einführung in Operations Research, 6. Auflage. Springer, Berlin

    Google Scholar 

  24. Domschke W, Scholl A, Voß S (1997) Produktionsplanung – Ablauforganisatorische Aspekte, 2. Auflage. Springer, Berlin

    Google Scholar 

  25. Drexl A, Kimms A (2001a) Belastungsorientierte Just-in-Time Variantenfließfertigung. Zeitschrift für Planung 12:101–115

    Google Scholar 

  26. Drexl A, Kimms A (2001b) Sequencing JIT mixed-model assembly lines under station-load and part-usage constraints. Manage Sci 47:480–491

    Article  Google Scholar 

  27. Drexl A, Kimms A, Matthießen L (2005) Algorithms for the car sequencing and the level scheduling problem. J Scheduling 9:153–176

    Article  Google Scholar 

  28. Duplaga EA, Hahn CK, Hur D (1996) Mixed-model assembly line sequencing at Hyundai Motor Company. Prod Invent Manage J 37:20–26

    Google Scholar 

  29. Duplaga EA, Bragg DJ (1998) Mixed-model assembly line sequencing for smoothing component parts usage: A comparative analysis. Int J Prod Res 36:2209–2224

    Article  Google Scholar 

  30. Engel C, Zimmermann J, Steinhoff A (1998) Objectives for order-sequencing in automobile production, In: Drexl A, Kimms A (Hrsg) Beyond Manufacturing resource planning (MRP II). Springer, Berlin

  31. Fandel G, Francois P (1989) Just-in-Time-Produktion und -Beschaffung: Funktionsweise, Einsatzvoraussetzungen und Grenzen. Zeitschrift für Betriebswirtschaft 59:531–544

    Google Scholar 

  32. Fliedner M, Boysen N (2006) Solving the car sequencing problem via branch & bound, erscheint in: Eur J Oper Res

  33. Gagné C, Gravel M, Price WL (2005) Solving real car sequencing problems with ant colony optimization, erscheint in: Eur J Oper Res

  34. Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deterministic sequencing and scheduling: A survey. Ann Discret Math 5:287–326

    Article  Google Scholar 

  35. Groeflin H, Luss H, Rosenwein MB, Wahls ET (1989) Final assembly for just-in-time manufacturing. Int J Prod Res 27:199–213

    Google Scholar 

  36. Gutenberg E (1983) Grundlagen der Betriebswirtschaftslehre, Band 1: Die Produktion, 24. Auflage. Springer, Berlin

    Google Scholar 

  37. Hopcroft J, Karp R (1973) An n2.5 algorithm for maximum matching in bipartite graphs. SIAM J Comput 2:225–231

    Article  Google Scholar 

  38. Inman RR, Bulfin RL (1991) Sequencing JIT mixed-model assembly lines. Manage Sci 37:901–904

    Google Scholar 

  39. Inman RR, Bulfin RL (1992) Quick and dirty sequencing for mixed-model multi-level JIT systems. Int J Prod Res 30:2011–2018

    Google Scholar 

  40. Jacob H (1990) Die Planung des Produktions- und Absatzprogramms, In: Industriebetriebslehre, H Jacob (Hrsg.), 4. Auflage, S. 405–590. Gabler, Wiesbaden

    Google Scholar 

  41. Joo S-H, Wilhelm WE (1993) A review of quantitative approaches in just-in-time manufacturing. Prod Plann Control 4:207–222

    Google Scholar 

  42. Kendall DG (1953) Stochastic processes occurring the theory of queues and their analysis by the method of imbedded Markov chains. Ann Math Stat 24:338–354

    Google Scholar 

  43. Klein R, Scholl A (2004) Planung und Entscheidung, 1. Auflage. Vahlen, München

    Google Scholar 

  44. Korkmazel T, Meral S (2001) Bicriteria sequencing methods for the mixed-model assembly line in just-in-time productions systems. Eur J Oper Res 131:188–207

    Article  Google Scholar 

  45. Kotani S, Ito T, Ohno K (2004) Sequencing problem for a mixed-model assembly line in the Toyota production system. Int J Prod Res 42:4955–4979

    Article  Google Scholar 

  46. Kovalyov MY, Kubiak W, Yeomans JS (2001) A computational study of balanced JIT optimization algorithms. INFOR 39:299–316

    Google Scholar 

  47. Kubiak W (1993) Minimizing variation of production rates in just-in-time systems: A survey. Eur J Prod Resh 66:259–271

    Google Scholar 

  48. Kubiak W (2003a) Cyclic just-in-time sequences are optimal. J Global Optim 27:333–347

    Article  Google Scholar 

  49. Kubiak W (2003b) On small deviations conjecture. Bull Polish Acad Sci 51:189–203

    Google Scholar 

  50. Kubiak W (2004) Fair Sequences. In: Leung JY-T, Anderson JH (Hrsg) Handbook of scheduling: Algorithms, models, and performance analysis. Chapman & Hall, Boca Raton

    Google Scholar 

  51. Kubiak W (2005) Solution of the Liu-Layland problem via bottleneck just-in-time sequencing. J Scheduling 8:295–302

    Article  Google Scholar 

  52. Kubiak W, Sethi S (1991) A note on schedules for mixed-model assembly lines in just-in-time production systems. Manage Sci 37:121–122

    Google Scholar 

  53. Kubiak W, Sethi S (1994) Optimal just-in-time schedules for flexible transfer lines. Int J Flexible Manuf Syst 6:137–154

    Article  Google Scholar 

  54. Kubiak W, Steiner G, Yeomans JS (1997) Optimal level schedules for mixed-model multi-level just-in-time assembly systems. Ann Oper Res 69:241–259

    Article  Google Scholar 

  55. Kurashige K, Yanagawa Y, Miyazaki S, Kameyama Y (2002) Time-based goal chasing method for mixed-model assembly line problem with multiple work stations. Prod Plann Control 13:735–745

    Article  Google Scholar 

  56. Lee C-Y, Vairaktarakis GL (1997) Workforce planning in mixed model assembly systems. Oper Res 45:553–567

    Google Scholar 

  57. Lee TO, Kim Y, Kim YK (2001) Two-sided assembly line balancing to maximize work relatedness and slackness. Comp Ind Eng 40:273–292

    Article  Google Scholar 

  58. Leu Y-Y, Matheson LA, Rees LP (1996) Sequencing mixed-model assembly lines with genetic algorithms. Comp Ind Eng 30:1027–1036

    Article  Google Scholar 

  59. Leu Y-Y, Huang PY, Russel RS (1997) Using beam search techniques for sequencing mixed-model assembly lines. Ann Oper Res 70:379–397

    Article  Google Scholar 

  60. Macaskill JLC (1972) Producti on-line balancing for mixed-model lines. Manage Sci 19:423–434

    Google Scholar 

  61. Mansouri SA (2005) A multi-objective genetic algorithm for mixed-model sequencing on JIT assembly lines. Eur J Oper Res 167:696–716

    Article  Google Scholar 

  62. Mather H (1989) Competitive manufacturing, 1. Auflage. Prentice Hall, Englewood Cliffs

    Google Scholar 

  63. McMullen PR (1998) JIT sequencing for mixed-model assembly lines with setups using tabu search. Prod Plann Control 9:504–510

    Article  Google Scholar 

  64. McMullen PR (2001a) An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives. Artif Intell Eng 15:309–317

    Article  Google Scholar 

  65. McMullen PR (2001b) A Kohonen self-organizing map approach to addressing a multiple objective, mixed-model JIT sequencing problem. Int J Prod Econ 72:59–71

    Article  Google Scholar 

  66. McMullen PR, Frazier GV (2000) A simulated annealing approach to mixed-model sequencing with multiple objectives on a JIT line. IIE Trans 32:671–679

    Article  Google Scholar 

  67. McMullen PR, Tarasewich P, Frazier GV (2000) Using genetic algorithms to solve the multi-product JIT sequencing problem with setups. Int J Prod Res 38:2653–2670

    Article  Google Scholar 

  68. Merengo C, Nava F, Pozzetti A (1999) Balancing and sequencing manual mixed-model assembly lines. Int J Prod Res 37:2835–2860

    Article  Google Scholar 

  69. Meyr H (2004) Supply chain planning in the German automotive industry. OR Spectrum 26:447–470

    Article  Google Scholar 

  70. Miltenburg J (1989) Level schedules for mixed-model assembly lines in just-in-time production systems. Manage Sci 35:192–207

    Google Scholar 

  71. Miltenburg J (2002) Balancing and scheduling mixed-model U-shaped production lines. Int J Flexible Manuf Syst 14:119–151

    Article  Google Scholar 

  72. Miltenburg J, Goldstein T (1991) Developing production schedules for balance part usage and smooth production loads for just-in-time production systems. Naval Res Logist 38:893–910

    Google Scholar 

  73. Miltenburg J, Sinnamon G (1989) Scheduling mixed-model multi-level just-in-time production systems. Int J Prod Res 27:1487–1509

    Google Scholar 

  74. Miltenburg J, Sinnamon G (1992) Algorithms for scheduling multi-level just-in-time production systems. IIE Trans 24:121–130

    Google Scholar 

  75. Miltenburg J, Sinnamon G (1995) Revisiting the mixed-model multi-level just-in-time scheduling problem. Int J Prod Res 33:2049–2052

    Google Scholar 

  76. Miltenburg J, Steiner G, Yeomans S (1990) A dynamic programming algorithm for scheduling mixed-model, just-in-time production systems. Math Comp Modell 13:57–66

    Article  Google Scholar 

  77. Monden Y (1998) Toyota Production System: An integrated approach to just-in-time, 3. Auflage. Engineering & Management Press, Norcross

    Google Scholar 

  78. Morabito MA, Kraus ME (1995) A note on scheduling mixed-model multi-level just-in-time production systems. Int J Prod Res 33:2061–2063

    Google Scholar 

  79. Ng WC, Mak KL (1994) A branch and bound algorithm for scheduling just-in-time mixed-model assembly lines. Int J Prod Econ 33:169–183

    Article  Google Scholar 

  80. Ohno T (1993) Das Toyota-Produktionssystem, 1. Auflage. Campus-Verlag, Frankfurt am Main

    Google Scholar 

  81. Piller FT, Moeslein K, Stotko CM (2004) Does mass customization pay? An economic approach to evaluate customer integration. Prod Plann Control 15:435–444

    Article  Google Scholar 

  82. Pine BJ (1993) Mass customization: The new frontier in business competition, 1. Auflage. Harvard Business School Press, Boston

    Google Scholar 

  83. Ponnambalam SG, Aravindan P, Rao MS (2003) Genetic algorithms for sequencing problems in mixed model assembly lines. Comput Ind Eng 45:669–690

    Article  Google Scholar 

  84. Reichwald R, Dietl B (1991) Produktionswirtschaft. In: Heinen E (Hrsg) Industriebetriebslehre – Entscheidungen im Industriebetrieb, 9. Auflage. Gabler, Wiesbaden

    Google Scholar 

  85. Schneeweiß C (1992) Planung 2 – Konzepte der Prozeß- und Modellgestaltung, 1. Auflage. Springer, Berlin

    Google Scholar 

  86. Scholl A (1999) Balancing and sequencing of assembly lines, 2. Auflage. Physica-Verlag, Heidelberg

    Google Scholar 

  87. Scholl A, Klein R, Domschke W (1998) Pattern based vocabulary building for effectively sequencing mixed-model assembly lines. J Heuristics 4:359–381

    Article  Google Scholar 

  88. Schonberger RJ (1982) Japanese manufacturing techniques, 1. Auflage. Free Press, London

    Google Scholar 

  89. Steiner G, Yeomans S (1993) Level schedules for mixed-model just-in-time processes. Manage Sci 39:728–735

    Google Scholar 

  90. Steiner G, Yeomans S (1996) Optimal level schedules in mixed-model, multi-level JIT assembly systems with pegging. Eur J Oper Res 95:38–52

    Article  Google Scholar 

  91. Sugimori Y, Kusunoki K, Cho F, Uchikawa S (1977) Toyota production system and kanban system materialization of JIT and respect-for-human system. Int J Prod Res 15:553–564

    Google Scholar 

  92. Sumichrast RT, Oxenrider KA, Clayton ER (2000) An evolutionary algorithm for sequencing production on a paced assembly line. Decision Sci 31:149–172

    Google Scholar 

  93. Sumichrast RT, Russel RS (1990) Evaluating mixed-model assembly line sequencing heuristics for just-in-time production systems. J Oper Manage 9:371–387

    Article  Google Scholar 

  94. Sumichrast RT, Russel RS, Taylor BW (1992) A comparative analysis of sequencing procedures for mixed-model assembly lines in a just-in-time production system. Int J Prod Res 30:199–214

    Google Scholar 

  95. Tamura T, Long H, Ohno K (1999) A sequencing problem to level part usage rates and work loads for a mixed-model assembly line with a bypass subline. Int J Prod Econ 60-61:557–564

    Article  Google Scholar 

  96. Tsai L-H (1995) Mixed-model sequencing to minimize utility work and the risk of conveyor stoppage. Manage Sci 41:485–495

    Article  Google Scholar 

  97. Ventura JA, Radhakrishnan S (2002) Sequencing mixed model assembly lines for a just-in-time production system. Prod Plann Control 13:199–210

    Article  Google Scholar 

  98. Wild R (1972) Mass-production management, 1. Auflage. Wiley & Sons, London

    Google Scholar 

  99. Xiaobo Z, Zhou Z, Asres A (1999) A note on Toyota's goal of sequencing mixed models on an assembly line. Comput Ind Eng 26:57–65

    Article  Google Scholar 

  100. Xiaobo Z, Zhou Z (1999) Algorithms for Toyota's goal of sequencing mixed models on an assembly line with multiple workstations. J Oper Res Soc 50:704–710

    Article  Google Scholar 

  101. Yu J, Yin Y, Chen Z (2006) Scheduling of an assembly line with a multi-objective genetic algorithm. Int J Adv Manuf Technol 29:551–555

    Article  Google Scholar 

  102. Zaramdini W (2003) A study of just-in-time sequencing procedures for mixed-model assembly lines based on genetic algorithms. In: MIC2003: Fifth Metaheuristics International Conference, Kyoto

    Google Scholar 

  103. Zeramdini W, Aigbedo H, Monden Y (2000) Bicriteria sequencing for just-in-time mixed-model assembly lines. Int J Prod Res 38:3451–3470

    Article  Google Scholar 

  104. Zhuqi X, Shusaku H (1994) A study on sequencing method for the mixed-model assembly line in just-in-time production systems. Comput Ind Eng 27:225–228

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Boysen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boysen, N., Fliedner, M. & Scholl, A. Level-Scheduling bei Variantenfließfertigung: Klassifikation, Literaturüberblick und Modellkritik. JfB 57, 37–66 (2007). https://doi.org/10.1007/s11301-007-0019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11301-007-0019-x

Schlüsselwörter

Keywords

Navigation