Skip to main content
Log in

From mass selection to genomic selection: one century of breeding for quantitative yield components of oil palm (Elaeis guineensis Jacq.)

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

More efficient methods are required to breed oil palm (Elaeis guineensis Jacq.) for yield maximization in order to meet the increased demand for palm oil while limiting environmental impacts. This review article analyzes the evolution of breeding schemes for oil palm yield and its quantative components and the changes expected to take place with genomic selection (GS). Genetic improvement of oil palm yield started in the 1920s through mass selection. Later, several disruptive improvements dramatically increased the rate of genetic progress: (1) understanding the heredity of fruit form and the adoption of tenera, with thicker mesocarp, in plantations; (2) the discovery of hybrid vigor and the adoption of modified reciprocal recurrent selection; and (3) clonal selection, exploiting intra-hybrid variability. In addition, the use of linear mixed models to estimate genetic values has made selection more efficient. Today, GS appears to be a new disruptive improvement that can speed up breeding schemes by avoiding field trials in some cycles and increase selection intensity by evaluating more candidates. The genetic potential for oil palm yield has increased considerably over one century of breeding. GS is expected to bring the rate of genetic progress to a previously unprecedented level. The future studies on oil palm GS will aim at making it efficient for all yield components. For this purpose, they should focus in particular on the optimization of training populations and on the improvement of prediction models. Minimizing environmental impacts will also require improvement in other aspects (resistance to diseases, cultural practices, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arolu IW, Rafii MY, Marjuni M et al (2016) Genetic variability analysis and selection of pisifera palms for commercial production of high yielding and dwarf oil palm planting materials. Ind Crop Prod 90:135–141. https://doi.org/10.1016/j.indcrop.2016.06.006

    Article  Google Scholar 

  • Baumung R, Sölkner J, Essl A (1997) Correlation between purebred and crossbred performance under a two-locus model with additive by additive interaction. J Anim Breed Genet 114:89–98. https://doi.org/10.1111/j.1439-0388.1997.tb00496.x

    Article  CAS  PubMed  Google Scholar 

  • Beirnaert A, Vanderweyen R (1941) Contribution à l’étude génétique et biométrique des variétiés d’Elaeis guineensis Jacq. Publ Inst Nat Etude Agron Congo Belge Ser Sci 27:1–101

    Google Scholar 

  • Billotte N, Jourjon M, Marseillac N et al (2010) QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 120:1673–1687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breure C, Bos I (1992) Development of elite families in oil palm (Elaeis guineensis Jacq.). Euphytica 64:99–112

    Google Scholar 

  • Breure CJ, Verdooren LR (1995) Guidelines for testing and selecting parent palms in oil palm, practical aspects and statistical methods. ASD Oil Palm Pap 9:68

    Google Scholar 

  • Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butler D, Cullis BR, Gilmour A, Gogel B (2009) ASReml-R reference manual. State Qld Dep Prim Ind Fish Brisb, Brisbane City 398 p

    Google Scholar 

  • Cappa EP, de Lima BM, da Silva-Junior OB et al (2019) Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP. Plant Sci:284, 9–215

    CAS  PubMed  Google Scholar 

  • Cochard B (2008) Etude de la diversité génétique et du déséquilibre de liaison au sein de populations améliorées de palmier à huile (Elaeis guineensis Jacq.). Thèse de Doctorat, Montpellier SupAgro

  • Cochard B, Durand-Gasselin T, PalmElit S (2018) Advances in conventional breeding techniques for oil palm. In: Achieving sustainable cultivation of oil palm, vol 1. Burleigh Dodds Science Publishing, pp 133–160

  • Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. Agron J 41:360–367

    Google Scholar 

  • Corley R (2009) How much palm oil do we need? Environ Sci Pol 12:134–139

    CAS  Google Scholar 

  • Corley R, Law I (1997) The future for oil palm clones. In: Proc Int. Planters Conf. Incorp. Soc. Kuala Lumpur, pp 279–289

  • Corley R, Tinker P (2016) The oil palm, 5th edn. Wiley-Blackwell, Chichester, p 680

    Google Scholar 

  • Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R package sommer. PLoS One 11:e0156744

    PubMed  PubMed Central  Google Scholar 

  • Cros D (2014) Etude des facteurs contrôlant l’efficacité de la sélection génomique chez le palmier à huile (Elaeis guineensis Jacq.). Montpellier SupAgro, Montpellier 204 p

    Google Scholar 

  • Cros D, Sánchez L, Cochard B et al (2014) Estimation of genealogical coancestry in plant species using a pedigree reconstruction algorithm and application to an oil palm breeding population. Theor Appl Genet 127:981–994. https://doi.org/10.1007/s00122-014-2273-3

    Article  PubMed  Google Scholar 

  • Cros D, Denis M, Bouvet J-M, Sánchez L (2015a) Long-term genomic selection for heterosis without dominance in multiplicative traits: case study of bunch production in oil palm. BMC Genomics 16:651

    PubMed  PubMed Central  Google Scholar 

  • Cros D, Denis M, Sánchez L et al (2015b) Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 128:397–410. https://doi.org/10.1007/s00122-014-2439-z

    Article  PubMed  Google Scholar 

  • Cros D, Bocs S, Riou V et al (2017) Genomic preselection with genotyping-by-sequencing increases performance of commercial oil palm hybrid crosses. BMC Genomics 18:839. https://doi.org/10.1186/s12864-017-4179-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Cros D, Tchounke B, Nkague-Nkamba L (2018) Training genomic selection models across several breeding cycles increases genetic gain in oil palm in silico study. Mol Breed 38:89. https://doi.org/10.1007/s11032-018-0850-x

    Article  CAS  Google Scholar 

  • Cros D, Mbo-Nkoulou L, Bell JM, et al (Under review) Within-family genomic selection in rubber tree increases genetic gain for rubber production. https://doi.org/10.1016/j.indcrop.2019.111464

    Google Scholar 

  • Davidson L (1993) Management for efficient cost-effective and productive oil palm plantations. In: Basiron Y et al (eds) Proc. 1991 PORIM Int. Oil Palm Conf. Agriculture. Palm Oil Research Institute of Malaysia, Kuala Lumpur, pp 153–167

    Google Scholar 

  • de Carvalho ADF, Fritsche Neto R, Geraldi IO (2008) Estimation and prediction of parameters and breeding values in soybean using REML/BLUP and least squares. Crop Breed Appl Biotechnol 8:219–224

    Google Scholar 

  • De Los Campos G, Naya H, Gianola D et al (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182:375–385

    Google Scholar 

  • de los Campos G, Hickey JM, Pong-Wong R et al (2013) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327–345

    PubMed Central  Google Scholar 

  • De Souza C (1992) Interpopulation genetic variances and hybrid breeding programs. Rev Bras Genet 15:643–643

    Google Scholar 

  • Demol J (2002) Amélioration des plantes: application aux principales espèces cultivées en régions tropicales. Presses Agronomiques de Gembloux, Belgique, p 581

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Methodol:1–38

    Google Scholar 

  • Domonhédo H, Cros D, Nodichao L et al (2018) Enjeux et amélioration de la réduction de l’acidité dans les fruits mûrs du palmier à huile, Elaeis guineensis Jacq. (synthèse bibliographique). Biotechnol Agron Soc Environ 22:1

    Google Scholar 

  • Durán R, Isik F, Zapata-Valenzuela J et al (2017) Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile. Tree Genet Genomes 13:74

    Google Scholar 

  • Durand-Gasselin T, Kouame RK, Cochard B et al (2000) Diffusion variétale du palmier à huile (Elaeis guineensis Jacq.). Ol Corps Gras Lipides 7:207–214

    Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255

    Google Scholar 

  • Falconer D, Mackay T (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow

    Google Scholar 

  • Gallais A (2011) Méthodes de création de variétés en amélioration des plantes. Quae, Versailles 280 p

    Google Scholar 

  • Gascon J, De Berchoux C (1964) Caractéristiques de la production de quelques origines d’Elaeis guineensis (Jacq.) et de leurs croisements: application à la sélection du palmier à huile. Oléagineux 19:75–84

    Google Scholar 

  • Gilmour AR, Thompson R, Cullis BR (1995) Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics:1440–1450

  • Grattapaglia D (2014) Breeding forest trees by genomic selection: current progress and the way forward. In: Genomics of plant genetic resources. Springer, Berlin, pp 651–682

    Google Scholar 

  • Habier D, Fernando R, Dekkers J (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12:186

    PubMed  PubMed Central  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49(1):12

    Google Scholar 

  • Henderson CR (1950) Estimation of genetic parameters. International Biometric Soc, Washington, DC, pp 186–187

    Google Scholar 

  • Henderson C (1984) Applicatıons of lınear models ın animal breedıng. Univ Guelph Press Guelph 11:652–653

    Google Scholar 

  • Hu X (2015) A comprehensive comparison between ANOVA and BLUP to valuate location-specific genotype effects for rape cultivar trials with random locations. Field Crop Res 179:144–149

    Google Scholar 

  • Ithnin M, Xu Y, Marjuni M et al (2017) Multiple locus genome-wide association studies for important economic traits of oil palm. Tree Genet Genomes 13:103. https://doi.org/10.1007/s11295-017-1185-1

    Article  Google Scholar 

  • Jacob F, Cros D, Cochard B, Durand-Gasselin T (2017) Agrigenomics in the breeder’s toolbox: latest advances towards an optimal implementation of genomic selection in oil palm. In: International Seminar on 100 Years of Technological Advancement in Oil Palm Breeding & Seed Production. ISOPB conference, 13 November 2017, KLCC, Kuala Lumpur, p 21

  • Jacquemard JC, Baudoin L, Noiret JM (1997) Le palmier à huile. In: Charrier A, Jacquot M, Hamon S, Nicolas D (eds) L’amélioration des plantes tropicales. CIRAD et ORSTOM, Paris, pp 507–531

    Google Scholar 

  • Junaidah J, Rafii M, Chin C, Saleh G (2011) Performance of Tenera oil palm population derived from crosses between deli Dura and Pisifera from different sources on inland soils. J Oil Palm Res 23:1210–1221

    Google Scholar 

  • Kwong QB, Teh CK, Ong AL et al (2016) Development and validation of a high-density SNP genotyping array for African oil palm. Mol Plant 9:1132–1141. https://doi.org/10.1016/j.molp.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  • Kwong QB, Ong AL, Teh CK et al (2017a) Genomic selection in commercial perennial crops: applicability and improvement in oil palm (Elaeis guineensis Jacq.). Sci Rep 7:2872. https://doi.org/10.1038/s41598-017-02602-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong QB, Teh CK, Ong AL et al (2017b) Evaluation of methods and marker systems in genomic selection of oil palm (Elaeis guineensis Jacq.). BMC Genet 18:107

    PubMed  PubMed Central  Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG et al (2011) Genomic selection in plant breeding: knowledge and prospects. In: Sparks DL (ed) Advances in Agronomy. Academic, Cambridge, pp 77–123

    Google Scholar 

  • Marchal A, Legarra A, Tisné S et al (2016) Multivariate genomic model improves analysis of oil palm (Elaeis guineensis Jacq.) progeny tests. Mol Breed 36:1–13. https://doi.org/10.1007/s11032-015-0423-1

    Article  Google Scholar 

  • Masani MYA, Izawati AMD, Rasid OA, Parveez GKA (2018) Biotechnology of oil palm: current status of oil palm genetic transformation. Biocatal Agric Biotechnol 15:335–347. https://doi.org/10.1016/j.bcab.2018.07.008

    Article  Google Scholar 

  • Meunier J, Gascon J (1972) Le schéma général d’amélioration du palmier à huile à l’IRHO. Oléagineux 27:1–12

    Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mrode RA (2005) Linear models for the prediction of animal breeding values, 2nd edn. CABI, Oxfordshire, p 344

    Google Scholar 

  • Muñoz F, Sanchez L (2018) breedR: statistical methods for forest genetic resources analysts. https://github.com/famuvie/breedR. Accessed Sept 2018

  • Muranty H, Jorge V, Bastien C et al (2014) Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops. Tree Genet Genomes 10:1491–1510

    Google Scholar 

  • Noh A, Rafii M, Saleh G et al (2012) Genetic performance and general combining ability of oil palm Deli dura x AVROS pisifera tested on inland soils. Sci World J 2012

  • Nouy B, Jacquemard J-C, Suryana E, et al (2006) The expected and observed characteristics of several oil palm (#Elaeis guineensis# Jacq.) clones. In: IOPRI (ed). s.n., public, p 17

  • Okoye M, Okwuagwu C, Uguru M (2009) Population improvement for fresh fruit bunch yield and yield components in oil palm (Elaeis guineensis Jacq.). Am Eurasian J Sci Res 4:59–63

    Google Scholar 

  • Okwuagwu C, Okoye MN, Okolo E et al (2008) Genetic variability of fresh fruit bunch yield in Deli/dura x tenera breeding populations of oil palm (Elaeis guineensis Jacq.) in Nigeria. J Trop Agric 46:52–57

    Google Scholar 

  • Ong-Abdullah M, Ordway JM, Jiang N et al (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ooi LC-L, Low E-TL, Abdullah MO et al (2016) Non-tenera contamination and the economic impact of SHELL genetic testing in the Malaysian independent oil palm industry. Front Plant Sci 7:771

    PubMed  PubMed Central  Google Scholar 

  • Oraguzie NC, Rikkerink EHA, Gardiner SE, de Silva HN (2007) Association Mapping in Plants. Springer, Berlin

    Google Scholar 

  • Pérez P, de los Campos G, Crossa J, Gianola D (2010) Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R. Plant Genome 3:106–116

    PubMed  PubMed Central  Google Scholar 

  • Piepho H, Möhring J, Melchinger A, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228

    Google Scholar 

  • Pootakham W, Jomchai N, Ruang-areerate P et al (2015) Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105:288–295

    CAS  PubMed  Google Scholar 

  • Potier F, Nouy B, Flori A, et al (2006) Yield potential of oil palm (Elaeis guineensis Jacq) clones: preliminary results observed in the Aek Loba genetic block in Indonesia. Int.Soc. Oil Palm Breeders Symp. ‘Yield potential in oil palm II’, Phuket, Thailand, 27–28 Nov

  • Pszczola M, Strabel T, Mulder H, Calus M (2012) Reliability of direct genomic values for animals with different relationships within and to the reference population. J Dairy Sci 95:389–400

    CAS  PubMed  Google Scholar 

  • Purba AR, Flori A, Baudouin L, Hamon S (2001) Prediction of oil palm (Elaeis guineensis, Jacq.) agronomic performances using the best linear unbiased predictor (BLUP). Theor Appl Genet 102:787–792

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org. Accessed Sept 2018

  • Rafii MY, Isa ZA, Kushairi A et al (2013) Variation in yield components and vegetative traits in Malaysian oil palm (Elaeis guineensis jacq.) dura×pisifera hybrids under various planting densities. Ind Crop Prod 46:147–157. https://doi.org/10.1016/j.indcrop.2012.12.054

    Article  Google Scholar 

  • Rincent R, Laloë D, Nicolas S et al (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 192:715–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rincent R, Charcosset A, Moreau L (2017) Predicting genomic selection efficiency to optimize calibration set and to assess prediction accuracy in highly structured populations. Theor Appl Genet:1–17

  • Rival A, Levang P (2014) Palms of controversies: oil palm and development challenges. CIFOR, Jakarta 58 p

    Google Scholar 

  • Schnell F, Cockerham C (1992) Multiplicative vs. arbitrary gene action in heterosis. Genetics 131:461–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Low E-TL, Ooi LC-L et al (2013) The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500:340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soh A (1994) Ranking parents by best linear unbiased prediction (BLUP) breeding values in oil palm. Euphytica 76:13–21

    Google Scholar 

  • Soh A (1999) Breeding plans and selection methods in oil palm. In: Symposium on the science of oil palm breeding. In: Proc. Seminar Science of oil palm breeding. PORIM, Montpellier

    Google Scholar 

  • Soh A, Gan H, Wong G et al (2003a) Oil palm genetic improvement. Plant Breed Rev 22:165–220

  • Soh A, Wong G, Hor T et al (2003b) Estimates of within family genetic variability for clonal selection in oil palm. Euphytica 133:147–163

    CAS  Google Scholar 

  • Soh AC, Wong CK, Ho YW, Choong CW (2010) Oil palm. In: Vollmann J, Rajcan I (eds) Oil Crops. Springer New York, New York, pp 333–367

    Google Scholar 

  • Soh AC, Mayes S, Roberts JA (2017) Oil palm breeding: genetics and genomics. CRC Press, Boca Raton, p 446

    Google Scholar 

  • Stuber C, Cockerham CC (1966) Gene effects and variances in hybrid populations. Genetics 54:1279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ting N-C, Mayes S, Massawe F et al (2018) Putative regulatory candidate genes for QTL linked to fruit traits in oil palm (Elaeis guineensis Jacq.). Euphytica 214:214. https://doi.org/10.1007/s10681-018-2296-y

    Article  CAS  Google Scholar 

  • Tisné S, Denis M, Cros D et al (2015) Mixed model approach for IBD-based QTL mapping in a complex oil palm pedigree. BMC Genomics 16:798

    PubMed  PubMed Central  Google Scholar 

  • USDA (2018) Oilseeds: world market and trade. Foreign Agricultural Service, Circular Series November 2018. https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf. Accessed Nov 2018

  • VanRaden PM (2007) Genomic measures of relationship and inbreeding. Interbull Bull 37:33–36

    Google Scholar 

  • Varshney RK, Roorkiwal M, Sorrells ME (2017) Genomic selection for crop improvement, 1st edn. Springer International Publishing, Cham 258 p

    Google Scholar 

  • Vitezica ZG, Varona L, Elsen J-M et al (2016) Genomic BLUP including additive and dominant variation in purebreds and F1 crossbreds, with an application in pigs. Genet Sel Evol 48:6. https://doi.org/10.1186/s12711-016-0185-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Lin G, Li C, Stothard P (2016) Genotype imputation methods and their effects on genomic predictions in cattle. Springer Sci Rev 4:79–98. https://doi.org/10.1007/s40362-017-0041-x

    Article  Google Scholar 

  • Wei M, Van der Werf JHJ, Brascamp EW (1991) Relationship between purebred and crossbred parameters. J Anim Breed Genet 108:262–269. https://doi.org/10.1111/j.1439-0388.1991.tb00184.x

    Article  Google Scholar 

  • White TL, Hodge GR (1989) Predicting breeding values with applications in forest tree improvement. Springer Netherlands, Dordrecht 367 p

    Google Scholar 

  • Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS (2017) Genomic selection in dairy cattle: the USDA experience. Annu Rev Anim Biosci 5:309–327. https://doi.org/10.1146/annurev-animal-021815-111422

    Article  PubMed  Google Scholar 

  • Wong C, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824

    CAS  PubMed  Google Scholar 

  • Xavier A, Muir WM, Craig B, Rainey KM (2016) Walking through the statistical black boxes of plant breeding. Theor Appl Genet 129:1933–1949

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Facundo Muñoz (CIRAD) for help with the breedR package and anonymous reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cros.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Communicated by S. C. González-Martínez

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Estimation of oil palm genetic values using the BLUP methodology and R software

Appendix. Estimation of oil palm genetic values using the BLUP methodology and R software

Here, we present a practical example of the estimation of oil palm genetic values using BLUP with R software (R Core Team 2017) and the breedR package (Muñoz and Sanchez 2018). It was chosen because the authors are familiar with its use, but other packages can be used, including sommer (Covarrubias-Pazaran 2016), RR-BLUP (Endelman 2011) and ASReml-R (Butler et al. 2009). In this example, we will estimate the GCA of parents from group A and group B evaluated in hybrid progeny tests while taking the pedigree-based relationships into account. This example can be very easily adapted for genomic prediction (GBLUP) as it only requires replacing the genealogical relationship matrices by genomic matrices, which could include individuals that have been genotyped but not progeny tested. The data files and R script are available at https://github.com/david-cros/article2018.

The data concern eight crosses made according to an incomplete NCM2 mating design between four group A Ds and four group B Ps (Table S1). The crosses were planted according to a RCBD with three replicates. The pedigree is given in Fig. 4. The yield obtained per cross in the different replicates (y) is listed in Supplementary Table S1. A simple linear mixed model was used, with replicates as fixed effect (β) and the parental GCAs as random effects (uA et uB):

Table S1 Incomplete NCM2 mating design (the asterisks represent the number of crosses)
Fig. S1
figure 4

Pedigree of the example population. Green: individuals from group A; blue: individuals from group B; turquoise: A × B hybrid crosses

$$ y=\boldsymbol{X}\beta +{\boldsymbol{Z}}_{\mathbf{1}}{u}_A+{\boldsymbol{Z}}_{\mathbf{2}}{u}_B+\varepsilon $$

In matrix form, the model is:

\( {u}_A\sim \mathrm{N}\left(0,0.5{\boldsymbol{A}}_{\boldsymbol{A}}{\sigma}_{a_A}^2\right) \), \( {u}_B\sim \mathrm{N}\left(0,0.5{\boldsymbol{A}}_{\boldsymbol{B}}{\sigma}_{a_B}^2\right) \) and for example, for the eight individuals in the pedigree of group A, the coancestry matrix

$$ 0.5{\boldsymbol{A}}_{\boldsymbol{A}}=\left(\begin{array}{cc}\begin{array}{cc}\begin{array}{cc}\kern0.75em 0.5& \kern1em 0\kern1.75em \\ {}\kern0.5em 0\kern0.75em & \kern1.25em 0.5\kern1.25em \end{array}& \begin{array}{cc}0.25\kern1.5em & 0\\ {}0.25\kern1.75em & 0\end{array}\\ {}\begin{array}{cc}\kern0.5em 0.25\kern0.75em & 0.25\kern1em \\ {}0\ & 0\kern1.75em \end{array}& \begin{array}{cc}0.5\kern1.5em &\ 0\\ {}0\kern1.75em & 0.5\end{array}\end{array}& \begin{array}{cc}\begin{array}{cc}0.125& 0\\ {}0.125& 0.25\end{array}& \begin{array}{cc}0.063& 0\\ {}0.188& 0\end{array}\\ {}\begin{array}{cc}\kern0.5em 0.25& \kern0.5em 0.125\\ {}0.25& 0.25\end{array}& \begin{array}{cc}0.188& 0\\ {}0.25& 0\end{array}\end{array}\\ {}\begin{array}{cc}\begin{array}{cc}\ 0.125& 0.125\kern0.5em \\ {}0& 0.25\end{array}& \begin{array}{cc}0.25& 0.25\\ {}0.125& 0.25\end{array}\\ {}\begin{array}{cc}0.063& 0.188\\ {}0& 0\end{array}& \begin{array}{cc}\ 0.188& 0.25\\ {}0& 0\end{array}\end{array}& \begin{array}{cc}\begin{array}{cc}0.5\ & 0.188\\ {}0.188& 0.5\end{array}& \begin{array}{cc}0.344&\ 0\\ {}0.344&\ 0\end{array}\\ {}\begin{array}{cc}0.344& 0.344\\ {}0& 0\end{array}& \begin{array}{cc}0.594&\ 0\\ {}0&\ 0.5\ \end{array}\end{array}\end{array}\right). $$

The estimates of the variance components were obtained from the syntax:

where remlf90 is the function that analyzes the linear mixed model using the REML, fixed is the argument representing the fixed effects (here, replicates), generic the argument representing the random genetic effects (GCAs) and indicating for each the associated incidence and variance-covariance matrices (parent_A and parent_B are the columns in the table yield_data). The objects Z.mat_A and Z.mat_B are the incidence matrices Z1 and Z2, respectively. The objects A.mat_A and A.mat_B are the matrices 0.5AA and 0.5AB generated by the function kinship (package kinship2) that computes the genealogical coancestry coefficients between the individuals in the pedigree.

The analysis gives the following variance estimates (± standard error): \( {\sigma}_{a_A}^2 \) = 192.15 ± 164.58, \( {\sigma}_{a_B}^2 \) = 195.36 ± 164.51, \( {\sigma}_{\upvarepsilon}^2 \)= 7.32 ± 2.68, and the solutions for the block effects (BLUE): β1=6.85±8.98, β2=5.78±8.98, β3=6.47±8.98. The solutions for the GCAs (BLUP) are given in Table S2. According to the parental GCAs, the best possible cross would have been A7 × B3, with an expected yield of 29.60 (β+\( {u}_{A_7} \)+\( {u}_{B_3} \)), while the best cross in the trial was A7 × B9, with an expected yield of 20.91 (and a mean observed yield of 21.98).

Table S2 Additive genetic values of progeny tested individuals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyouma, A., Bell, J.M., Jacob, F. et al. From mass selection to genomic selection: one century of breeding for quantitative yield components of oil palm (Elaeis guineensis Jacq.). Tree Genetics & Genomes 15, 69 (2019). https://doi.org/10.1007/s11295-019-1373-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-019-1373-2

Keywords

Navigation