Skip to main content

Advertisement

Log in

Next-generation sequencing, assembly, and comparative analyses of the latex transcriptomes from two elite Hevea brasiliensis varieties

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The great progress has been made in rubber tree breeding, but the molecular mechanisms underlying high yield are not well understood. Here, we reported the sequencing, assembly, and comparative analyses of latex transcriptome from two rubber tree varieties. In total, 33,852 unigenes were generated with de novo assembly. The blastx results indicated that 27,886 and 15,704 unigenes showed significant similarities to known proteins from NCBI nr and Swissprot databases, respectively. Among these annotated unigenes, 21,841 and 9010 ones were separately assigned to Gene Ontology (GO) functional categories and Clusters of Orthologous Groups (COGs). Of 126 KEGG pathways, metabolic pathway was the biggest one, suggesting that active metabolic processes happen in rubber tree latex. In contrast to RRIM 600, 2513 and 1391 genes were separately up- and downregulated in RY 7-20-59. The expression profiles of 25 unigenes were further confirmed by real-time RT-PCR, suggesting that the differently expressed genes (DEGs) identified by RNA-seq were accurate and reliable in this study. The DEGs between RRIM 600 and RY 7-20-59 were significantly enriched in plant-pathogen interactions, phenylpropanoid biosynthesis, phenylalanine metabolism, ubiquinone and other terpenoid-quinone biosynthesis, biosynthesis of secondary metabolites, and photosynthesis. Interestingly, the genes involved in rubber biosynthesis pathway, such as CPT, GPPS, HMGR, HMGS, FPPS and DXS, were differently expressed between RRIM 600 and RY 7-20-59. It was the first time that the latex transcriptomes of two rubber tree varieties have been compared and analyzed on a transcriptome-wide scale. Our results not only enrich the transcriptome data of rubber tree but also provide new insights into understanding latex transcriptome and molecular mechanisms underlying high yielding in rubber tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asawatreratanakul K, Zhang YW, Wititsuwannakul D et al (2003) Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. A key factor participating in natural rubber biosynthesis. Eur J Biochem 270:4671–4680

    Article  CAS  PubMed  Google Scholar 

  • Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cataldo F (2000) Guayule rubber: a new possible world scenario for the production of natural rubber. Prog Rubber Plast Technol 16:31–59

    CAS  Google Scholar 

  • Chappell J (1995) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol 46:521–547

    Article  CAS  Google Scholar 

  • Chow KS, Mat-Isa MN, Bahari A et al (2012) Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex. J Exp Bot 63(5):1863–1871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chow KS, Wan KL, Isa MNM et al (2007) Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. J Exp Bot 58(10):2429–2440

    Article  CAS  PubMed  Google Scholar 

  • Chye ML, Tan CT, Chua NH (1992) Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg3 are differentially expressed. Plant Mol Biol 19:473–484

    Article  CAS  PubMed  Google Scholar 

  • Cornish K (2001) Similarities and differences in rubber biochemistry among plant species. Phytochemistry 57:1123–1134

    Article  CAS  PubMed  Google Scholar 

  • d’Auzac J, Jacob JL, Prévôt JC et al (1997) The regulation of cis-polyisoprene production (natural rubber) from Hevea brasiliensis. In: Pandalai SG (ed) Recent research developments in plant physiology. Research Singpost, Trivandrum, pp 273–332

    Google Scholar 

  • Dennis MS, Light DR (1989) Rubber elongation factor from Hevea brasiliensis. J Biol Chem 264:18608–18617

  • Eveland AL, Satoh-Nagasawa N, Goldshmidt A et al (2010) Digital gene expression signatures for maize development. Plant Physiol 154:1024–1039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-Seq. Nat Methods 8:469–477

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hepper CM, Audley BG (1969) The biosynthesis of rubber from β-hydroxy-β-methylglutaryl-coenzyme A in Hevea brasiliensis latex. Biochem J 114:379–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang HS (2005) Rubber tree elite clones. In: Huang HS (ed) Fifty years of rubber tree breeding in China. China Agriculture Press, Beijing, pp 145–148

    Google Scholar 

  • Huang HS, Fang JL, Zhuo SC, Tian L, Tan DG (2000) Selection and breeding of potential rubber clone SCATC 7-20-59. Chin J Trop Crops 21(2):1–6

    CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang ZD, Pan YQ (1992) Rubber cultivation under climatic stresses in China. In: Sethuraj MR, Mathew NM (eds) Natural rubber: biology, cultivation and technology. Elsevier Science Publishers BV, Amsterdam, pp 220–238

    Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed Central  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma 12:323

    Article  CAS  Google Scholar 

  • Li DJ, Deng Z, Chen CL et al (2010) Identification and characterization of genes associated with tapping panel dryness from Hevea brasiliensis latex using suppression subtractive hybridization. BMC Plant Biol 10:140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li DJ, Deng Z, Qin B, Liu XH, Men ZH (2012) De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genomics 13:192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Oh SK, Kang H, Shin DH et al (1999) Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J Biol Chem 274:17132–17138

    Article  CAS  PubMed  Google Scholar 

  • Post J, van Deenen N, Fricke J et al (2012) Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum. Plant Physiol 158:1406–1417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Priya P, Venkatachalam P, Thulaseedharan A (2007) Differential expression pattern of rubber elongation factor (REF) mRNA transcripts from high and low yielding clones of rubber tree (Hevea brasiliensis Muell. Arg.). Plant Cell Rep 26:1833–1838

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshan PM, Goncalves PS, Omokhafe KO (2009) Breeding Hevea rubber. In: Mohan JS, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer Science + Business Publishing, New York, pp 469–522

    Chapter  Google Scholar 

  • Rahman AY, Usharraj AO, Misra BB et al (2013) Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genomics 14:75

    Article  PubMed Central  PubMed  Google Scholar 

  • Salgado LR, Koop DM, Pinheiro DG et al (2014) De novo transcriptome analysis of Hevea brasiliensis tissues by RNA-seq and screening for molecular markers. BMC Genomics 15:236

    Article  PubMed Central  PubMed  Google Scholar 

  • Sando T, Takaoka C, Mukai Y et al (2008) Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis. Biosci Biotechnol Biochem 72:2049–2060

    Article  CAS  PubMed  Google Scholar 

  • Severin AJ, Woody JL, Bolon YT et al (2010) RNA-Seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  PubMed Central  PubMed  Google Scholar 

  • Tang C, Xiao X, Li H et al (2013) Comparative analysis of latex transcriptome reveals putative molecular mechanisms underlying super productivity of Hevea brasiliensis. PLoS ONE 8(9), e75307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Triwitayakorn K, Chatkulkawin P, Kanjanawattanawong S et al (2011) Transcriptome sequencing of Hevea brasiliensis for development of microsatellite markers and construction of a genetic linkage map. DNA Res 18(6):471–482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venkatachalam P, Thanseem I, Thulaseedharan A (1999) A rapid and efficient method for isolation of RNA from bark tissues of Hevea brasiliensis. Curr Sci 77:635–637

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-Seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xia Z, Xu H, Zhai J, Li D, Luo H, He C, Huang X (2011) RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Mol Biol 77(3):299–308

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Gao Y, Wang J (2012) Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-seq technique. PLoS ONE 7(2), e30646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang G, Guo G, Hu X et al (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20:646–654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31200514, 31270651 and 30960310), Fundamental Research Funds for Rubber Research Institute, CATAS (1630022015003), and National Program on Key Basic Research Project of China (2012CB723005). We would like to thank Beijing Genomics Institute (Shenzhen) for assistance with the raw data processing and bioinformatics analyses.

Data Archiving Statement

The assembled sequences and sequence reads were separately submitted to the NCBI Transcriptome Shotgun Assembly (TSA) and Sequence Read Archive (SRA) database, and the accession numbers of TSA and SRA were GBHP00000000 and SRP044081, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejun Li.

Additional information

Communicated by J. L. Wegrzyn

This article is part of the Topical Collection on Gene Expression

Dejun Li and Lili Hao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLS 28 kb)

Table S2

(XLS 45 kb)

Table S3

(XLS 2921 kb)

Table S4

(XLS 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Hao, L., Liu, H. et al. Next-generation sequencing, assembly, and comparative analyses of the latex transcriptomes from two elite Hevea brasiliensis varieties. Tree Genetics & Genomes 11, 98 (2015). https://doi.org/10.1007/s11295-015-0928-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0928-0

Keywords

Navigation