Skip to main content
Log in

Amounts and patterns of nucleotide variation within and between two Japanese conifers, sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa) (Cupressaceae sensu lato)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa) are the most important timber species in Japan. To quantify and compare the level of nucleotide variation in these species, we investigated their variation at ten nuclear loci. Average values of nucleotide diversity at synonymous sites (π SYN) found in sugi and hinoki were 0.0038 and 0.0069, respectively. However, although the average value of nucleotide diversity was higher in hinoki than in sugi, their average values of haplotype diversity were similar. Deviations from the standard neutral model were detected at two loci in hinoki using Tajima’s D, Fay and Wu’s H, and Strobeck’s S statistics, which seem to be due to its historical population structure. Levels of divergence between the two species at synonymous sites of the ten genes ranged from 0.121 to 0.566 (0.28 on average). These values positively correlated with their guanine + cytosine contents at third-codon positions of synonymous sites (%GC3s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold CA, Lowther JC (1955) A new Cretaceous conifer from northern Alaska. Am J Bot 42:522–528

    Article  Google Scholar 

  • Bielawski JP, Dunn KA, Yang Z (2000) Rates of nucleotide substitution and mammalian nuclear gene evolution: approximate and maximum-likelihood methods lead to different conclusions. Genetics 156:1299–1308

    PubMed  CAS  Google Scholar 

  • Brown GR, Kadel EE, Bassoni DL, Kiehene KL, Temesgen B, Buijutenen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159:799–809

    PubMed  CAS  Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA 101:15255–15260

    Article  PubMed  CAS  Google Scholar 

  • Dunn KA, Bielawski JP, Yang Z (2001) Substitution rates in Drosophila nuclear genes: implications for translational selection. Genetics 157:295–305

    PubMed  CAS  Google Scholar 

  • Dvornyk VA, Mikkonen SM, Savolainen O (2002) Low nucleotide diversity at the pal1 locus in the widely distributed Pinus sylvestris. Mol Biol Evol 19:179–188

    PubMed  CAS  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    PubMed  CAS  Google Scholar 

  • Gadek PA, Alpers DL, Heslewood MM, Quinn CJ (2000) Relationships within Cupressaceae sensu lato: A combined morphological and molecular approach. Am J Bot 87:1044–1057

    Article  PubMed  CAS  Google Scholar 

  • García-Gil MR, Mikkonen M, Savolainen O (2003) Nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris. Mol Ecol 12:1195–1206

    Article  PubMed  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JH (1978) A general model to account for enzyme variation in natural populations. V. The SAS-CFF model. Theor Popul Biol 13:1–45

    Article  Google Scholar 

  • Goldman N, Yang Z (1994) A codon based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    PubMed  CAS  Google Scholar 

  • González-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006a) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought–stress response in Pinus taeda L. Genetics 172:1915–1926

    Article  CAS  Google Scholar 

  • González-Martínez SC, Krutovsky KV, Neale DB (2006b) Forest-tree population genomics and adaptive evolution. New Phytol 170:227–238

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B 351:1291–1298

    Article  Google Scholar 

  • Hartl DL (1999) A primer of population genetics, 3rd edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Heuertz M, De Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174:2095–2105

    Article  PubMed  CAS  Google Scholar 

  • Hizume M, Kondo T, Shibata F, Ishizuka R (2001) Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia 66:307–311

    Google Scholar 

  • Hudson RR (1987) Estimating the recombination parameter of a finite population medel without selection. Genet Res 50:245–250

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164

    PubMed  CAS  Google Scholar 

  • Hudson RR, Kaplan NL (1988) The coalescent process in models with selection and recombination. Genetics 120:831–820

    PubMed  CAS  Google Scholar 

  • Hurst LD, Williams EJB (2000) Covariation of GC content and the silent site substitution rate in rodents: implications for methodology and for the evolution of isochors. Gene 261:107–114

    Article  PubMed  CAS  Google Scholar 

  • Iwata H, Ujino-Ihara T, Yoshimura K, Nagasaka K, Mukai Y, Tsumura Y (2001) Cleaved amplified polymorphic sequence markers in sugi, Cryptomeria japonica D. Don, and their locations on a linkage map. Theor Appl Genet 103:881–895

    Article  CAS  Google Scholar 

  • Kado T, Yoshimaru, Tsumura Y, Tachida H (2003) Nucleotide variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato). Genetics 164:1547–1559

    PubMed  CAS  Google Scholar 

  • Kado T, Ushio Y, Yoshimaru H, Tsumura Y, Tachida H (2006) Contrasting patterns of DNA variation in natural populations of two related conifers, Cryptomeria japonica and Taxodium distichum (Cupressaceae sensu lato). Genes Genet Syst 81:103–113

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kliman RM, Andolfatto P, Coyne JA, Depaulis F, Kretman R, Berry AJ, McCarter J, Wakeley J, Hey J (2000) The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics 156:1913–1931

    PubMed  CAS  Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    PubMed  CAS  Google Scholar 

  • Komulainen P, Brown GR, Mikkonen M, Karhu A, Garcia-Gil MR, O’Malley D, Lee B, Neale DB, Savolainen O (2003) Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theor Appl Genet 107:667–678

    Article  PubMed  CAS  Google Scholar 

  • Kreitaman M (1983) Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304:412–417

    Article  Google Scholar 

  • Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold hardiness and wood quality related genes in Douglas-fir. Genetics 171:2029–2041

    Article  PubMed  CAS  Google Scholar 

  • Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168:447–461

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Bioinformatics 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Kusumi J, Tsumura Y, Yoshimaru H, Tachida H (2000) Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences. Am J Bot 87:1480–1488

    Article  PubMed  CAS  Google Scholar 

  • Kusumi J, Tsumura Y, Yoshimaru H, Tachida H (2002) Molecular evolution of nuclear genes in Cupressaceae, a group of conifer trees. Mol Biol Evol 19:736–747

    PubMed  CAS  Google Scholar 

  • Matsumoto A, Tsumura Y (2004) Evaluation of cleaved amplified polymorphic sequence markers for Chamaecyparis obtusa based on expressed sequence tag information from Cryptomeria japonica. Theor Appl Genet 110:80–91

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • Moriyama EN, Powell JR (1996) Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol 13:261–177

    PubMed  CAS  Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Nikaido AM, Ujino T, Iwata H, Yoshimura K, Yoshimaru H, Suyama Y, Murai M, Nagasaka K, Tsumura Y (2000) AFLP and CAPS linkage maps of Cryptomeria japonica. Theor Appl Genet 100:825–831

    Article  CAS  Google Scholar 

  • Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:1289–1299

    Article  CAS  Google Scholar 

  • Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98

    Article  PubMed  CAS  Google Scholar 

  • Ohta T (1992) The nearly neutral theory of molecular evolution. Annu Rev Ecol Syst 23:263–286

    Article  Google Scholar 

  • Pot D, McMillan L, Echt C, Le Provost G, Garnier-Gere P, Cato S, Plomion C (2005) Nucleotide variation in genes involved in wood formation in two pine species. New Phytol 167:101–112

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A (1996) Se-Al: Sequence Alignment Editor. Available at http://evolve.zoo.ox.ac.uk/

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Smith NGC, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415:1022–1024

    Article  PubMed  CAS  Google Scholar 

  • Strobeck C (1987) Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision. Genetics 117:149–153

    PubMed  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–160

    PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tani N, Takahashi T, Iwata H, Mukai Y, Ujino-Ihara T, Matsumoto A, Yoshimura K, Yoshimaru H, Murai M, Nagasaka K, Tsumura Y (2003) A consensus linkage map for sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags. Genetics 165:1551–1568

    PubMed  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166

    Article  PubMed  CAS  Google Scholar 

  • Tomaru N, Tsumura Y, Ohba K (1994) Genetic variation and population differentiation in natural populations of Cryptomeria japonica. Plant Species Biol 9:191–199

    Article  Google Scholar 

  • Tsumura Y, Suyama Y, Yoshimura K, Shirato N, Mukai Y (1997) Sequence-tagged-sites (STSs) of cDNA clones in Cryptomeria japonica and their evaluation as molecular markers in conifers. Theor Appl Genet 94:764–772

    Article  CAS  Google Scholar 

  • Tsumura Y, Matsumoto A, Tani N, Ujino-Ihara T, Kado T, Iwata H, Uchida K (2007) Genetic diversity and the genetic structure of natural populations of Chamaecyparis obtusa: implications for management and conservation. Heredity (in press)

  • Uchida K, Tomaru N, Tomaru C, Yamamoto C, Ohba K (1997) Allozyme variation in natural populations of hinoki, Chamaecyparis obtusa (Sieb. Et Zucc.) Endl. and its comparison with the plus-trees selected from artificial stands. Breed Sci 47:7–14

    CAS  Google Scholar 

  • Ujino-Ihara T, Kanamori H, Yamane H, Taguchi Y, Namiki N, Mukai Y, Yoshimura K, Tsumura Y (2005) Comparative analysis of expressed sequence tags of conifers and angiosperms reveals sequences specifically conserved in conifers. Plant Mol Biol 59:895–907

    Article  PubMed  CAS  Google Scholar 

  • Wall JD (2000) A comparison of estimators of the population recombination rate. Mol Biol Evol 17:156–163

    PubMed  CAS  Google Scholar 

  • Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES (2002) Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA 99:12959–12962

    Article  PubMed  CAS  Google Scholar 

  • Willyard A, Syring J, Gernandt D, Liston A, Cronn R (2007) Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Mol Biol Evol 24:90–101

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto C (1981) Possibilities of interspecific hybridization between Chamaecyparis lawsoniana and some other Chamaecyparis species. J Jap For 63:311–319 (in Japanse)

    Google Scholar 

  • Yang Z (2000) PAML: phylogenetic analysis by maximum likelihood. version 3.0. University College London, London, UK

    Google Scholar 

Download references

Acknowledgements

We thank Y. Taguchi for her technical support and both O. Savolainen and an anonymous reviewer for helpful comments. This study was supported by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (B) no. 16380112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Tsumura.

Additional information

Communicated by O. Savolainen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kado, T., Matsumoto, A., Ujino-Ihara, T. et al. Amounts and patterns of nucleotide variation within and between two Japanese conifers, sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa) (Cupressaceae sensu lato). Tree Genetics & Genomes 4, 133–141 (2008). https://doi.org/10.1007/s11295-007-0094-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-007-0094-0

Keywords

Navigation