Skip to main content
Log in

Web event evolution trend prediction based on its computational social context

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Predicting future trends of Web events can help significantly improve the quality of Web services, e.g., improving the user satisfaction of news websites. Existing approaches in this regard are based mainly on temporal patterns mined with the assumption that enough temporal data is available on hand. However, most Web events do not have a long lifecycle, but a burst property, which drastically reduces the performance of temporal patterns mining. Furthermore, these approaches overlook the influence of the social context surrounding the Web events. In this paper, we propose a novel method to predict future trends of Web events, based on their social contexts rather than temporal patterns. More specially, in the proposed method, a computational model for the social context is first built as a two-layer Association Linked Network considering its properties, such as the associative network property and the small world property. Then, the interaction between a Web event and the social context is simulated, based on the anchoring theory. Finally, an external force is defined and evaluated to quantify the influence of the social context on the evolution of Web events, which is used to predict future trends of Web events. Experiments show that the performance of the proposed method is better than that of the traditional time series-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. The evolution here does not mean that one event changes/eolves to another one, but the content of webpages following this event change/evolve over time.

  2. The social context here mainly denotes the context on the Web, but we want to keep this name to highlight its social nature.

  3. http://news.baidu.com/

  4. Note that not all of the webpages can be downloaded because some of them may be videos and some of them cannot be linked and crawled.

  5. http://nlp.stanford.edu/software/corenlp.shtml

References

  1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proc. 20Th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

  2. Augoustinos, M., Innes, J.M.: Towards an integration of social representations and social schema theory. British Journal of Social Psychology 29(3), 213–231 (1990)

    Article  Google Scholar 

  3. Barabási, A.L.: Scale-free networks: a decade and beyond. Science 325(5939), 412–413 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barabási, A.L.: Bursts: The hidden patterns behind everything we do. PLUME (2011)

  5. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson Correlation Coefficient. In: Noise Reduction in Speech Processing, pp. 1–4. Springer (2009)

  6. Berendt, B., Hotho, A., Stumme, G.: Towards Semantic Web Mining. In: Horrocks, I., Hendler, J. (eds.) The Semantic Web ? ISWC 2002, Lecture Notes in Computer Science, vol. 2342, pp. 264–278. Springer, Berlin (2002)

    Chapter  MATH  Google Scholar 

  7. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd International Conference on Machine Learning (ICML), ICML ’06, pp. 113–120. ACM, New York (2006)

  8. Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gómez-gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. CoRR arXiv:abs/1407.0742 (2014)

  9. Bródka, P., Kazienko, P.: Multi-layered social networks. CoRR arXiv:abs/1212.2425 (2012)

  10. Cai, H., Huang, Z., Srivastava, D., Zhang, Q.: Indexing evolving events from tweet streams. IEEE Trans. Knowl. Data Eng. 27(11), 3001–3015 (2015)

    Article  Google Scholar 

  11. Chan, N.H.: Autoregressive moving average models. Time Series: Applications to Finance with R and S-Plus, Second Edition pp. 23–37 (2010)

  12. Chapman, G.B., Johnson, E.J.: Anchoring, activation, and the construction of values. Organ. Behav. Hum. Decis. Process. 79(2), 115–153 (1999)

    Article  Google Scholar 

  13. Cho, H., Varian, H.: Predicting the Present with Google Trends. Tech. rep., Google Inc (2009)

  14. Creel, S., Dantzer, B., Goymann, W., Rubenstein, D.R.: The ecology of stress: Effects of the social environment. Functional Ecology (2012)

  15. Dickison, M.E., Magnani, M., Rossi, L.: Multilayer social networks. Cambridge University Press (2016)

  16. Do, Q.X., Chan, Y.S., Roth, D.: Minimally supervised event causality identification. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’11, pp. 294–303. Association for Computational Linguistics, Stroudsburg (2011)

  17. Edwards, J.: Retrieving the big society. Wiley Blackwell (2012)

  18. Forgas, J.P.: Handbook of affect and social cognition. Psychology Press (2012)

  19. Furnham, A., Boo, H.C.: A literature review of the anchoring effect. J. Socio-Econ. 40(1), 35–42 (2011)

    Article  Google Scholar 

  20. Galotti, K.M.: Cognitive psychology in and out of the laboratory. SAGE Publications Inc (2013)

  21. Gao, C., Liu, J.: Network-based modeling for characterizing human collective behaviors during extreme events. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47(1), 171–183 (2017)

    Article  Google Scholar 

  22. Gurevitch, M.: The social structure of acquaintanceship networks. Massachusetts Institute of Technology (1961)

  23. Hennig-Thurau, T., Walsh, G., Walsh, G.: Electronic word-of-mouth: motives for and consequences of reading customer articulations on the internet. Int. J. Electron. Commer. 8(2), 51–74 (2003)

    Article  Google Scholar 

  24. Hong, L., Yin, D., Guo, J., Davison, B.D.: Tracking trends: incorporating term volume into temporal topic models. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), KDD ’11, pp. 484–492. ACM, New York (2011)

  25. Jiang, M., Fang, Y., Xie, H., Chong, J., Meng, M.: User click prediction for personalized job recommendation. World Wide Web 22(1), 325–345 (2019)

    Article  Google Scholar 

  26. Jin, X., Spangler, S., Ma, R., Han, J.: Topic initiator detection on the world wide web. In: Proceedings of the 19th International Conference on World Wide Web, WWW ’10, pp. 481–490. ACM, New York (2010)

  27. Jo, Y., Hopcroft, J.E., Lagoze, C.: The Web of topics: discovering the topology of topic evolution in a corpus. In: Proceedings of the 20th International Conference on World Wide Web (WWW), WWW ’11, pp. 257–266. ACM, New York (2011)

  28. Kelly, D., Smyth, B., Caulfield, B.: Uncovering measurements of social and demographic behavior from smartphone location data. IEEE Transactions on Human-Machine Systems 43(2), 188–198 (2013)

    Article  Google Scholar 

  29. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. Journal of Complex Networks 2(3), 203–271 (2014)

    Article  Google Scholar 

  30. Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: On the bursty evolution of blogspace. In: Proceedings of the 12th International Conference on World Wide Web (WWW), pp. 568–576. ACM, New York (2003)

  31. Lee, P., Lakshmanan, L.V., Milios, E.: Keysee: Supporting keyword search on evolving events in social streams. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, pp. 1478–1481. ACM, New York (2013)

  32. Liang, G., He, W., Xu, C., Chen, L., Zeng, J.: Rumor identification in microblogging systems based on users’ behavior. IEEE Transactions on Computational Social Systems 2(3), 99–108 (2015)

    Article  Google Scholar 

  33. Linardi, S., McConnell, M.A.: No excuses for good behavior: Volunteering and the social environment. J. Public Econ. 95(5), 445–454 (2011)

    Article  Google Scholar 

  34. Liu, G., Liu, Y., Liu, A., Li, Z., Zheng, K., Wang, Y., Zhou, X.: Context-aware trust network extraction in large-scale trust-oriented social networks. World Wide Web 21(3), 713–738 (2018)

    Article  Google Scholar 

  35. Liu, Y., Xu, S.: Detecting rumors through modeling information propagation networks in a social media environment. IEEE Transactions on Computational Social Systems 3(2), 46–62 (2016)

    Article  MathSciNet  Google Scholar 

  36. Loftus, G.R.: Evaluating forgetting curves. Journal of Experimental Psychology: Learning, Memory, and Cognition 11(2), 397 (1985)

    Google Scholar 

  37. Lopez, J., Scott, J.: Social structure Open. University Press (2000)

  38. Luo, X., Xu, Z., Yu, J., Chen, X.: Building association link network for semantic link on Web resources. IEEE Trans. Autom. Sci. Eng. 8(3), 482–494 (2011)

    Article  Google Scholar 

  39. Luo, X., Xuan, J., Lu, J., Zhang, G.: Measuring the semantic uncertainty of news events for evolution potential estimation. ACM Transactions on Information Systems 34(4), 24:1–24:25 (2016)

    Article  Google Scholar 

  40. Makkonen, J.: Investigations on event evolution in tdt. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology: Proceedings of the HLT-NAACL 2003 Student Research Workshop - Volume 3, NAACLstudent ’03, pp. 43–48. Association for Computational Linguistics, Stroudsburg (2003)

  41. Margalit, M., Leyser, Y., Avrahm, Y., Lewy-Osin, M.: Social-environmental characteristics (family climate) and sense of coherence in kibbutz families with disabled and non-disabled children. European Journal of Special Needs Education 3(2), 87–98 (1988)

    Article  Google Scholar 

  42. McGuinness, D.L., Van Harmelen, F., et al.: Owl Web ontology language overview. W3C Recommendation 10(2004-03), 10 (2004)

    Google Scholar 

  43. Mei, Q., Zhai, C.: Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD), KDD ’05, pp. 198–207. ACM, New York (2005)

  44. Michelle, L., Roehm, A.M.T.: When will a brand scandal spill over, and how should competitors respond? J. Mark. Res. 43(3), 366–373 (2006)

    Article  Google Scholar 

  45. Milgram, S.: The small world problem. Psychology Today 2(1), 60–67 (1967)

    Google Scholar 

  46. Mussweiler, T., Strack, F.: Hypothesis-consistent testing and semantic priming in the anchoring paradigm: a selective accessibility model. J. Exp. Soc. Psychol. 35(2), 136–164 (1999)

    Article  Google Scholar 

  47. Myers, J.L., O’Brien, E.J.: Accessing the discourse representation during reading. Discourse Processes 26(2-3), 131–157 (1998)

    Article  Google Scholar 

  48. Olick, J.K., Robbins, J.: Social memory studies: From collective memory to the historical sociology of mnemonic practices. Annu. Rev. Sociol. 24(1), 105–140 (1998)

    Article  Google Scholar 

  49. Papadimitriou, P., Dasdan, A., Garcia-Molina, H.: Web graph similarity for anomaly detection. Journal of Internet Services and Applications 1(1), 19–30 (2010)

    Article  Google Scholar 

  50. Radinsky, K., Bennett, P.N.: Predicting content change on the web. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM), WSDM ’13, pp. 415–424. ACM, New York (2013)

  51. Radinsky, K., Davidovich, S., Markovitch, S.: Learning causality for news events prediction. In: Proceedings of the 21st International Conference on World Wide Web (WWW), WWW ’12, pp. 909–918. ACM, New York (2012)

  52. Radinsky, K., Horvitz, E.: Mining the Web to predict future events. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM), WSDM ’13, pp. 255–264. ACM, New York (2013)

  53. Ruiz, E.J., Hristidis, V., Castillo, C., Gionis, A., Jaimes, A.: Correlating financial time series with micro-blogging activity (2012)

  54. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information processing & management 24(5), 513–523 (1988)

    Article  Google Scholar 

  55. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  56. Schriver, J.M.: Human behavior and the social environment. Allyn and Bacon (2004)

  57. Slanzi, G., Balazs, J., Velásquez, J.D.: Predicting Web user click intention using pupil dilation and electroencephalogram analysis. In: 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 417–420. IEEE (2016)

  58. de Sola Pool, I., Kochen, M.: Contacts and influence. Social Networks 1(1), 5–51 (1978)

    Article  MathSciNet  Google Scholar 

  59. Stavrianou, A., Andritsos, P., Nicoloyannis, N.: Overview and semantic issues of text mining. ACM SIGMOD Record 36(3), 23–34 (2007)

    Article  Google Scholar 

  60. Tao, X., Zhou, X., Zhang, J., Yong, J.: Sentiment Analysis for Depression Detection on Social Networks. In: Advanced Data Mining and Applications - 12Th International Conference, ADMA 2016, Gold Coast, QLD, Australia, December 12-15, 2016, Proceedings, pp. 807–810 (2016)

  61. Wang, C., Blei, D., Heckerman, D.: Continuous time dynamic topic models. arXiv:1206.3298 (2012)

  62. Wang, C., Lu, J., Zhang, G.: Integration of Ontology Data through Learning Instance Matching. In: WI 2006. IEEE/WIC/ACM International Conference on Web Intelligence, 2006, pp. 536–539 (2006)

  63. Wang, C., Lu, J., Zhang, G.: Mining key information of Web pages: a method and its application. Expert Syst. Appl. 33(2), 425–433 (2007)

    Article  Google Scholar 

  64. Wang, C., Xiao, Z., Liu, Y., Xu, Y., Zhou, A., Zhang, K.: Sentiview: sentiment analysis and visualization for internet popular topics. IEEE Transactions on Human-Machine Systems 43(6), 620–630 (2013)

    Article  Google Scholar 

  65. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  66. Whitworth, B., Whitworth, A.P.: The social environment model: Small heroes and the evolution of human society. First Monday 15(11) (2010)

  67. Xuan, J., Luo, X., Zhang, G., Lu, J., Xu, Z.: Uncertainty analysis for the keyword system of Web events. IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(6), 829–842 (2016)

    Article  Google Scholar 

  68. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM ’11, pp. 177–186. ACM, New York (2011)

  69. Yang, Y., Carbonell, J.G., Brown, R.D., Pierce, T., Archibald, B.T., Liu, X.: Learning approaches for detecting and tracking news events. IEEE Intell. Syst. 14(4), 32–43 (1999)

    Article  Google Scholar 

  70. Yuan, H., Yuan, K., Zhao, Z.: On Predicting Event Propagation on Weibo. In: 2017 International Conference on Service Systems and Service Management, pp. 1–6 (2017)

  71. Zhao, H., Zhou, H., Yuan, C., Huang, Y., Chen, J.: Social discovery: Exploring the correlation among three-dimensional social relationships. IEEE Transactions on Computational Social Systems 2(3), 77–87 (2015)

    Article  Google Scholar 

  72. Zhong, N., Liu, J., Shi, Y., Yao, Y.: An interview with professor raj reddy on Web intelligence (WI) and computational social science (CSS). Web Intelligence 16(3), 143–146 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under grant nos. 91746203, and by the Australian Research Council (ARC) under discovery grant DP190101733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfeng Luo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Computational Social Science as the Ultimate Web Intelligence

Guest Editors: Xiaohui Tao, Juan D. Velasquez, Jiming Liu, and Ning Zhong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, J., Luo, X., Lu, J. et al. Web event evolution trend prediction based on its computational social context. World Wide Web 23, 1861–1886 (2020). https://doi.org/10.1007/s11280-019-00753-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-019-00753-2

Keywords

Navigation