Skip to main content
Log in

LCR and AFD of the Products of Nakagami-m and Nakagami-m Squared Random Variables: Application to Wireless Communications Through Relays

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The paper considers level crossing rate (LCR) and average fade duration (AFD) of the product of independent and identically distributed (i.i.d) Nakagami-m (NM) and double NM squared (also known as gamma-gamma) random variables (RVs). The derived statistics are then directly applied to the radio-frequency (RF) - free space optical (FSO), dual-hop (DH), amplify-and-forward (AF) relaying system over non turbulent-induced-fading channels (nTIFCs) and turbulent-induced-fading channels (TIFCs). The obtained results for LCR and AFD of DH-AF, RF-FSO system over TIFCs and nTIFCs are numerically evaluated and graphically presented for various system model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Talha, B., & Pätzold, M. (2011). Channel models for mobile-to-mobile cooperative communication systems: A state of the art review. IEEE Vehicular Technology Magazine, 6(2), 33–43.

    Article  Google Scholar 

  2. Park, J., Chae, C. B., & Yoon, G. (2017). Amplify-and-forward two-way relaying system over free-space optics channels. Journal of Communications and Networks, 19(5), 481–492.

    Article  Google Scholar 

  3. Zhang, J., Pan, X., Pan, G., & Xie, Y. (2020). Secrecy analysis for multi-relaying RF-FSO systems with a multi-aperture destination. IEEE Photonics Journal, 12(2), 1–11.

    Google Scholar 

  4. Zhang, Y., Zhang, J., Yang, L., Ai, B., & Alouini, M. S. (2020). On the performance of dual-hop systems over mixed FSO/mmWave fading channels. IEEE Open Journal of the Communications Society, 1, 477–489.

    Article  Google Scholar 

  5. Douik, A., Dahrouj, H., Al-Naffouri, T. Y., & Alouini, M. S. (2016). Hybrid radio/free-space optical design for next generation backhaul systems. IEEE Transactions on Communications, 64(6), 2563–2577.

    Article  Google Scholar 

  6. Stefanovic, C., Pratesi, M., & Santucci, F. (2019). Second order statistics of mixed RF-FSO relay systems and its application to vehicular networks. In: IEEE ICC’19 ONF Symposium

  7. Stefanovic, C., Pratesi, M., & Santucci, F. (2018). Second Performance evaluation of cooperative communications over fading channels in vehicular networks. In: Second URSI Atalntic Science Radio Meeting

  8. Fawaz, W., Abou-Rjeily, C., & Assi, C. (2017). UAV-aided cooperation for FSO communication systems. IEEE Communications Magazine, 56(1), 70–75.

    Article  Google Scholar 

  9. Bhargav, N., da Silva, C. R. N., Chun, Y. J., Leonardo, E. J., Cotton, S. L., & Yacoub, M. D. (2018). On the product of two \(\kappa\)-\(\mu\) random variables and its application to double and composite fading channels. IEEE Transactions on Wireless Communications, 17(4), 2457–2470.

    Article  Google Scholar 

  10. Milosevic, N., Stefanovic, M., Nikolic, Z., Spalevic, P., & Stefanovic, C. (2018). Performance analysis of interference-limited mobile-to-mobile \(\kappa\)-\(\mu\) fading channel. Wireless Personal Communications, 101(3), 1685–1701.

    Article  Google Scholar 

  11. Milosevic, N., Stefanovic, C., Nikolic, Z., Bandjur, M., & Stefanovic, M. (2018). First-and second-order statistics of interference-limited mobile-to- mobile Weibull fading channel. Journal of Circuits, Systems and Computers, 27(11), 1685–1701.

    Article  Google Scholar 

  12. Stefanovic, C., Panic, S., Mladenovic, V., Jovkovic, S., & Stefanovic, M. (2020). Higher order statistics of cooperative mobile-to-mobile relay communications over composite fading channels. International Journal of Ad Hoc and Ubiquitous Computing, 35(2), 61–70.

    Article  Google Scholar 

  13. Hajri, N., Khedhiri, R., & Youssef, N. (2020). On selection combining diversity in dual-hop relaying systems over double rice channels: Fade statistics and performance analysis. IEEE Access, 8, 72188–72203.

    Article  Google Scholar 

  14. Li, S., Yang, L., Da Costa, D. B., Zhang, J., & Alouini, M. S. (2020). Performance analysis of mixed RF-UWOC dual-hop transmission systems. IEEE Transactions on Vehicular Technology, 69(11), 14043–14048.

    Article  Google Scholar 

  15. Liu, W., Ding, J., Zheng, J., Chen, X., & Chih-Lin, X. I. (2020). Relay-assisted technology in optical wireless communications: A survey. IEEE Access, 8, 194384–194409.

    Article  Google Scholar 

  16. Liang, H., Gao, C., Li, Y., Miao, M., & Li, X. (2020). Performance analysis of mixed MISO RF/SIMO FSO relaying systems. Optics Communications, 478, 126344.

    Article  Google Scholar 

  17. Sharma, S., Madhukumar, A. S., & Swaminathan, R. (2020). Performance of dual-hop hybrid FSO/RF system with pointing errors optimization. In: Proceeding of the 2020 IEEE 91st vehicular technology conference (VTC2020-Spring), pp. 1–5

  18. Panic, S., Mohanchenko, S., Stefanovic, C., & Stefanovic, M. (2020). First order outage statistics of asymmetrical RF-OW dual-hop relay communications. The University Thought-Publication in Natural Sciences, 10(1), 57–62.

    Article  Google Scholar 

  19. Nor, N. A. M., Ghassemlooy, Z., Bohata, J., Saxena, P., Komanec, M., Zvanovec, S., et al. (2016). Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel. Journal of Lightwave Technology, 35(1), 45–53.

    Article  Google Scholar 

  20. Juel, N. H. (2021). Secrecy performance analysis of mixed and exponentiated Weibull RF-FSO cooperative relaying system. IEEE Access, 9, 72342–72356.

    Article  Google Scholar 

  21. Salhab, M. A., & Yang, L. (2021). Mixed RF/FSO relay networks: RIS-equipped RF source vs RIS-aided RF source. IEEE Wireless Communications Letters, 10(8), 1712–1716.

    Article  Google Scholar 

  22. Liu, X., Gu, C., Guo, K., Cheng, M., Lin, M., & Zhu, W.-P. (2021). Robust beamforming and outage performance of uplink multiuser satellite-aerial-terrestrial networks with mixed RF-FSO channels. IEEE Photonics Journal, 13(4), 1–8.

    Google Scholar 

  23. Yura, H. T., & Hanson, S. G. (2010). Mean level signal crossing rate for an arbitrary stochastic process. Journal of the Optical Society of America A, 27(4), 797–807.

    Article  Google Scholar 

  24. Jurado-Navas, A., Balsells, J. M. G., Castillo-Vazquez, M., Puerta-Notario, A., Monroy, I. T., & Olmos, J. J. V. (2017). Fade statistics of M-turbulent optical links. EURASIP Journal on Wireless Communications and Networking, 2017, 112. https://doi.org/10.1186/s13638-0170898-z.

    Article  Google Scholar 

  25. Stefanovic, D., Stefanovic, C., Djosic, D., Milic, D., Rancic, D., & Stefanovic, M. (2019). LCR of the ratio of the product of two squared Nakagami-m random processes and its application to wireless. In: Proceedings of the 2019 18th IEEE international symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–4

  26. Issaid, C. B., & Alouini, M. S. (2019). Level crossing rate and average outage duration of free space optical links. IEEE Transactions on Communications, 67(9), 6234–6242.

    Article  Google Scholar 

  27. Stefanovic, C., Panic, S., Djosic, D., Milic, D., & Stefanovic, M. (2021). On the second order statistics of N-hop FSO communications over N-gamma-gamma turbulence induced fading channels. Physical Communication, p. 101289

  28. Vetelino, F. S., Young, C., & Andrews, L. (2007). Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence. Applied Optics, 46(18), 3780–3789.

    Article  Google Scholar 

  29. Kim, H. K., Higashino, T., Tsukamoto, K., & Komaki, S. (2011). Optical fading analysis considering spectrum of optical scintillation in terrestrial free-space optical channel. IEEE International Conference on Space Optical Systems and Applications, pp. 58–66

  30. Le, H. D., & Pham, A. T. (2021). Level crossing rate and average fade duration of satellite-to-UAV FSO channels. IEEE Photonics Journal, 13(1), 1–14.

    Article  MathSciNet  Google Scholar 

  31. Stüber, L. G. (1996). Principles of mobile communication. Mass, USA: Kluwer Academic.

    Book  Google Scholar 

  32. Suljovic, S., Milic, D., Panic, S., Stefanovic, C., & Stefanovic, M. (2020). Level crossing rate of macro diversity reception in composite Nakagami-m and Gamma fading environment with interference. Digital Signal Processing, 102, 102758. https://doi.org/10.1016/j.dsp.2020.102758.

    Article  Google Scholar 

  33. Stefanovic, C., Jaksic, B., Spalevic, P., Panic, S., & Trajcevski, Z. (2013). Performance analysis of selection combining over correlated Nakagami-m fading channels with constant correlation model for desired signal and cochannel interference. Radioengineering, 22(4), 1176–1181.

    Google Scholar 

  34. Al-Ahmadi, S. (2014). The gamma-gamma signal fading model: A survey. IEEE Antennas and Propagation Magazine, 56(5), 245–260.

    Article  Google Scholar 

  35. Petkovic, M., Zdravkovic, N., Stefanovic, C., & Djordjevic, G. (2014). Performance analysis of SIM-FSO system over Gamma–Gamma atmospheric channel. In: XLIX International Scientific Conference on Information, Communication and Energy Systems and Technologies—ICEST 2014, vol. 1, pp. 19–22

  36. Datsikas, C. K., Peppas, K. P., Sagias, N. C., & Tombras, G. S. (2010). Serial free-space optical relaying communications over gamma-gamma atmospheric turbulence channels. IEEE/OSA Journal of Optical Communications and Networking, 2(8), 576–586.

    Article  Google Scholar 

  37. Badarneh, O. S., Muhaidat, S., Sofotasios, P. C., Cotton, S. L., Rabie, K., & da Costa, D. B. (2018). The N\(*\) Fisher–Snedecor F cascaded fading model. In: Proceedings of the 14th international conference on wireless and mobile computing, networking and communications (WiMob), p. 1–7

  38. Karagiannidis, G. K., Sagias, N. C., & Mathiopoulos, P. T. (2007). N* Nakagami: A novel stochastic model for cascaded fading channels. IEEE Transactions on Communications, 55(8), 1453–1458.

    Article  Google Scholar 

  39. Bithas, P. S., Kanatas, A. G., da Costa, D. B., Upadhyay, P. K., & Dias, U. S. (2018). On the double-generalized gamma statistics and their application to the performance analysis of V2V communications. IEEE Transactions on Communications, 66(1), 448–460.

    Article  Google Scholar 

  40. Stefanovic, C., Panic, S., Bhatia, V., & Kumar, N. (2021). On second-order statistics of the composite channel models for UAV-to-ground communications with UAV selection. IEEE Open Journal of the Communications Society, 2, 534–544. https://doi.org/10.1109/OJCOMS.2021.3064873.

    Article  Google Scholar 

  41. Stefanovic, C., Panic, S. R., Bhatia, V., Kumar, N., & Sharma, S., (2021). On higher-order statistics of the channel model for UAV-to-ground communications. In: Proceedings of the 2021 IEEE 93rd vehicular technology conference (VTC2021-Spring), pp. 1–5. https://doi.org/10.1109/VTC2021-Spring51267.2021.9448754

  42. Al-Hmood, H., Abbas, R. S., & Al-Raweshidy,H. S. (2020). Ratio of products of mixture gamma variates with applications to wireless communications. IEEE Transactions on Communications. arXiv preprint arXiv:2007.10826

  43. Stankovic, A., Stefanovic, C., Sekulovic, N., Popovic, Z., & Stefanovic, M. (2012). The distribution of minimum of ratios of two random variables and its application in analysis of multi-hop systems. Radioengineering, 21(4), 1156–1162.

    Google Scholar 

  44. Matovic, A., Mekic, E., Sekulovic, N., Stefanovic, M., Matovic, M., & Stefanovic, C. (2013). The distribution of the ratio of the products of two independent: variates and its application in the performance analysis of relaying communication systems. Mathematical Problems in Engineering. https://doi.org/10.1155/2013/147106.

    Article  MathSciNet  Google Scholar 

  45. Hadzi-Velkov, Z., Zlatanov, N., & Karagiannidis, G. K. (2009). On the second order statistics of the multihop rayleigh fading channel. IEEE Transactions on Communications, 57(6), 1815–1823.

    Article  Google Scholar 

  46. Al-Habash, A., Andrews, L. C., & Phillips, R. L. (2001). Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Optical Engineering, 40(8), 1554–1562.

    Article  Google Scholar 

  47. Yacoub, M. D., Bautista, J. V., & Guedes, L. G. R. (1999). On higher order statistics of the Nakagami-m distribution. IEEE Transactions on Vehicular Technology, 48(3), 790–794.

    Article  Google Scholar 

  48. Stefanovic, C., Djosic, D., Panic, S., Milic, D., & Stefanovic, M. (2020). A framework for statistical channel modeling in 5G wireless communication systems. 5G Multimedia communications: Technology, multiservices, deployment, CRC Press 2020, pp. 31–54

  49. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of Integrals, Series, and Products (6th ed.). New York: Academic.

    MATH  Google Scholar 

Download references

Funding

This work has not been funded.

Author information

Authors and Affiliations

Authors

Contributions

The authors equally contributed to this work.

Corresponding author

Correspondence to Caslav Stefanovic.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no conflict of interest or competing interests.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The variance of \(\dot{Z}_{SD}\) denoted as \(\sigma _{\dot{Z}_{SD}}^{2}\) and given by (8) is obtained under the assumption that \(\dot{Z}_{SD}\) is a zero-mean Gaussian RV [45]. Based on (1), the first derivative of \({Z}_{SD}\) can be written as:

$$\begin{aligned} \dot{Z}_{SD}= & y_{NM,2}^{2}y_{NM,3}^{2}\dot{y}_{NM,1}+2y_{NM,1}y_{NM,2}y_{NM,3}^{2}\dot{y}_{NM,2} \nonumber \\&{+}\,2y_{NM,1}y_{NM,2}^{2}y_{NM,3}\dot{y}_{NM,3} \end{aligned}$$
(A1)

where \(\dot{Y}_{NM,1}\), \(\dot{Y}_{NM,2}\) and \(\dot{Y}_{NM,3}\) are the first derivatives of \({Y}_{NM,1}\),\({Y}_{NM,2}\), and \({Y}_{NM,3}\), respectively. Since the linear transformation of the Gaussian RVs is a zero mean Gaussian RV, the variance of \(\sigma _{\dot{Z}_{SD}}^{2}\) can be expressed through the variances of \(\dot{Y}_{NM,1}\), \(\dot{Y}_{NM,2}\) and \(\dot{Y}_{NM,3}\) denoted as \(\sigma _{\dot{Y}_{NM,1}}^{2}, \sigma _{\dot{Y}_{NM,2}}^{2}\) and \(\sigma _{\dot{Y}_{NM,3}}^{2}\), respectively:

$$\begin{aligned} \sigma _{\dot{Z}_{SD}}^{2}= & y_{NM,2}^{4}y_{NM,4}^{4}\sigma _{\dot{Y}_{NM,1}}^{2}+4y_{NM,1}^{2}y_{NM,2}^{2}y_{NM,3}^{4}\sigma _{\dot{Y}_{NM,2}}^{2} \nonumber \\&{+}\,4y_{NM,1}^{2}y_{NM,2}^{4}y_{NM,3}^{2}\sigma _{\dot{Y}_{NM,3}}^{2} \end{aligned}$$
(A2)

After using substitution \(y_{NM,1}=\frac{z_{SD}}{y_{NM,2}^{2}y_{NM,3}^{2}}\) and some algebra \(\sigma _{\dot{Z}_{SD}}^{2}\) is obtained as given by (8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanovic, C., Milovanovic, I., Panic, S. et al. LCR and AFD of the Products of Nakagami-m and Nakagami-m Squared Random Variables: Application to Wireless Communications Through Relays. Wireless Pers Commun 123, 2665–2678 (2022). https://doi.org/10.1007/s11277-021-09258-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09258-6

Keywords

Navigation