Skip to main content
Log in

A 0.9 V, 4.57 mW UWB LNA with Improved Gain and Low Power Consumption for 3.1–10.6 GHz Ultra-Wide Band Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we present a 0.9 V, 4.57 mW UWB LNA with improved gain and low power consumption for 3.1–10.6 GHz ultra-wide band applications. In its input stage, a common gate amplifier is used to achieve approximately \(50\,\Omega\) input resistance across the entire band, instead of using a common source stage. However, the current reused technique is used to save power consumption by using the same DC current path for both transistors in the designed circuit instead of utilizing two stage cascade configuration. The output matching is achieved by tuning the total parasitic capacitance with the inductor \(\hbox {L}_{d1}\) at the output node. In its inter stage, inter stage matching technique is used to make the flat gain response and to extend the bandwidth, simultaneously. From simulation results, the designed LNA shows an average power gain \(\hbox {S}_{21}\) of 15.8  dB with the gain variation of \(\pm 0.97 \hbox { dB}\), an input return loss \(\hbox {S}_{11}\) of −30 to −10 dB, a high reverse isolation \(\hbox {S}_{12}\) of −59 to −43 dB, output return loss \(\hbox {S}_{22}\) of −16 to −10 dB, and a small group-delay variation of \(\pm 34\) ps across the entire band. It also shows minimum achievable noise figure below 3.2 dB, and a power consumption of 4.57 mW from a supply voltage of 0.9 V. When a two tone test is performed at 8 GHz with 10 MHz spacing, the linearity of the designed LNA such as 1-dB compression point and third order input intercept point are −22.5 and −9 dBm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rastegar, H., Saryazdi, S., & Hakimi, A. (2012). Wideband and multiband CMOS LNAs: State-of-the-art and future prospects. Microelectronics Journal, 44(9), 774–786.

    Google Scholar 

  2. Rastegar, H., Saryazdi, S., & Hakimi, A. (2013). A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6 GHz wireless applications in \(0.13\,\upmu\)m CMOS process. Microelectronics Journal, 44(3), 201–209.

    Article  Google Scholar 

  3. Nakhlestani, A., Hakimi, A., & Movahhedi, M. (2012). A novel configuration for UWB LNA suitable for low-power and low-voltage applications. Microelectronics Journal, 43(7), 444–451.

    Article  Google Scholar 

  4. Shim, J., Yang, T., & Jeong, J. (2013). Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique. Microelectronics Journal, 44(9), 821–826.

    Article  Google Scholar 

  5. Slimane, A., Trabelsi, M., & Belaroussi, M. T. (2011). A 0.9 V, 7 mW UWB LNA for 3.1–10.6 GHz wireless applications in \(0.18\,\mu \text{ m }\) CMOS technology. Microelectronics Journal, 42(11), 1263–1268.

    Article  Google Scholar 

  6. Pandey, S., & Singh, J. (2015). A 0.6 V, low-power and high-gain ultra-wideband low-noise amplifier with forward-body-bias technique for low-voltage operations. IET Microwaves Antennas & Propagation, 9(8), 728–734.

    Google Scholar 

  7. Hsieh, J.-Y., Wang, T., & Lu, S.-S. (2009). Wideband low-noise amplifier by LC load-reusing technique. Electronics Letters, 45(25), 1280–1281.

    Article  Google Scholar 

  8. Chang, C.-H., Wang, T., & Jou, C. F. (2012). Dual cross-coupling LNA with forward body bias technique. Electronics Letters, 48(18), 280–281.

    Article  Google Scholar 

  9. Wang, Y.-H., Lin, K.-T., Wang, T., Chiu, H.-W., Chen, H.-C., & Lu, S.-S. (2010). A 2.1–6 GHz tunnable-band LNA with adaptive frequency responses by transisitor size scaling. IEEE Mirocwave and Wireless Components Letters, 20(6), 346–348.

    Article  Google Scholar 

  10. Wang, T., Chen, H.-C., Chiu, H.-W., Lin, Y.-S., Huang, G.-W., & Shey-Shi, L. (2006). Micromachined CMOS LNA and VCO by CMOS-compatible ICP deep trench technology. IEEE Transactions on Microwave Theory and Techniques, 54(2), 580–588.

    Article  Google Scholar 

  11. Meng-Ting, H., Yi-Cheng, C., & Yu-Zhang, H. (2013). Design of low power UWB LNA based on common source topology with current-reused technique. Microelectronics Journal, 44(12), 1223–1230.

    Article  Google Scholar 

  12. Sapone, G., & Palmisano, G. (2011). A 3–10 GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Transactions on Microwave Theory and Techniques, 59(3), 678–686.

    Article  Google Scholar 

  13. Hsieh, H. -H., Wu, P.-Y., Jou, C.-P., Hsueh, F.-L., & Huang, G.-W. (2011). 60 GHz high gain low noise amplifiers with a common-gate inductive feedback in 65 nm CMOS. In RFIC symposium (pp. 1–4).

  14. Lu, Y., Yeo, K. S., Cabuk, A., Ma, J., Do, M. A., & Lu, Z. (2006). A novel CMOS low noise amplifier design for 3.1–10.6 GHz ultra-wideband wireless receiver. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(8), 1683–1692.

    Article  Google Scholar 

  15. Weng, R.-M., Liu, C.-Y., & Lin, P.-C. (2010). A low-power full-band low-noise amplifier for ultra-wideband receivers. IEEE Transactions on Microwave Theory and Techniques, 58(8), 2077–2083.

    Article  Google Scholar 

  16. Wan, Q., Wang, Q., & Zheng, Z. (2015). Design and analysis of a 3.1–10.6 GHz UWB low noise amplifier with forward body bias technique. AEU-International Journal of Electronics and Communications, 69(1), 119–125.

    Article  Google Scholar 

  17. Shim, Y., Kim, C.-W., Lee, J., & Lee, S.-G. (2007). Design of full band UWB common-gate LNA. The IEEE Microwave and Wireless Components Letters, 17(10), 721–723.

    Article  Google Scholar 

  18. Chen, C. C., & Wang, Y. C. (2013). 3.1–10.6 GHz ultra-wideband LNA design using dual-resonant broadband matching technique. AEU-International Journal of Electronics and Communications, 67(6), 500–503.

    Article  Google Scholar 

  19. Sarkar, A., Das, A. K., De, S., & Sarkar, C. K. (2012). Effect of gate engineering in double-gate MOSFETs for analog/RF applications. Microelectronic Journal, 43(11), 873–882.

    Article  Google Scholar 

  20. Wan, Q., Wang, Q., & Zheng, Z. (2010). Low-power current-reused RF front-end based on optimized transformers topology. Elsevier Integration, the VLSI Journal, 43, 230–236.

    Article  Google Scholar 

  21. Brederlow, R., et al. (2001). A mixed-signal design roadmap. IEEE Design & Test of Computers, 18(6), 34–36.

    Article  Google Scholar 

  22. Yang, H. Y., Lin, Y. S., & Chen, C. C. (2008). 2.5 dB NF 3.1–10.6 GHz CMOS UWB LNA with small group-delay variation. Electronics Letters, 44(8), 528–529.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Gawande, T. & Kondekar, P.N. A 0.9 V, 4.57 mW UWB LNA with Improved Gain and Low Power Consumption for 3.1–10.6 GHz Ultra-Wide Band Applications. Wireless Pers Commun 96, 583–597 (2017). https://doi.org/10.1007/s11277-017-4185-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4185-4

Keywords

Navigation