Skip to main content
Log in

Low-Complexity MUSIC-Like Algorithm with Sparse Array

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a low-complexity MUSIC-like algorithm with sparse linear array. Three uniform linear arrays are combined into a sparse linear array. An extended signal subspace is got by organizing the forth-order-cumulant of array received data. During this process, no eigen-value decomposition (EVD) or singular-value decomposition needs to be implemented. Then, a MUSIC-like method is proposed to estimate the direction-of-arrival of incident signals. In order to bring down the computational complexity further, an ESPRIT-like algorithm is used to obtain the initial estimations of direction angles, by which the search range can be diminished significantly. Compared with the classical MUSIC and PM, the proposed MUSIC-like algorithm shows better angular resolution and higher estimation accuracy. Moreover, because of the avoidance of EVD and the reduction of search range, the computational burden of the proposed MUSIC-like algorithm with per-estimation by ESPRIT-like algorithm is small. The performance of the proposed method is demonstrated through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, X., Gao, X., Feng, G., & Xu, D. (2009). Blind joint DOA and DOD estimation and identifiability results for MIMO radar with different transmit receive array manifolds. Progress in Electromagnetics Research B, 18, 101–119.

    Article  Google Scholar 

  2. Stoica, P., & Selen, Y. (2004). Model-order selection: a review of information criterion rules. IEEE Signal Processing Magazine, 21(4), 6–47.

    Article  Google Scholar 

  3. Huang, X., Guo, Y. J., & Bunton, J. D. (2010). A hybrid adaptive antenna array. IEEE Trans. Wireless Communication, 9(5), 1770–1779.

    Article  Google Scholar 

  4. Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Article  Google Scholar 

  5. Roy, R., & Kailath, T. (1986). Estimation of signal parameters via rotational invariance techniques. IEEE Transactions on ASSP, 37(7), 984–995.

    Article  Google Scholar 

  6. Ottersten, B., Viberg, M., & Kailath, T. (1991). Performance analysis of the total least squares ESPRIT algorithm. IEEE Transactions on Signal Processing, 39(5), 1122–1135.

    Article  MATH  Google Scholar 

  7. Marcos, S., Marsal, A., & Benidir, M. (1995). The propagator method for source bearing estimation. Signal Processing, 42(2), 121–138.

    Article  Google Scholar 

  8. Chen, H., & Zhang, X. F. (2013). Two-dimensional DOA estimation of coherent sources for acoustic vector-sensor array using a single snapshot. Wireless Personal Communication, 72, 1–13.

    Article  Google Scholar 

  9. Stoica, P., & Nehorai, A. (1989). MUSIC, maximum likelihood and Cramer–Rao bound. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(5), 720–741.

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, P., Liu, Z., & Jiang, W. L. (2014). Improved sparse Bayesian learning method for direction-of-arrival estimation in non-uniform noise. Journal of Electromagnetic Waves and Applications., 28(5), 563–573.

    Article  MathSciNet  Google Scholar 

  11. Zhang, Y., Ye, Z. F., Xu, X., & Hu, N. (2014). Off-grid DOA estimation using array covariance matrix and block-sparse Bayesian learning. Signal Processing, 98, 197–201.

    Article  Google Scholar 

  12. Yang, Z., Xie, L. H., & Zhang, C. S. (2014). Off-grid direction of arrival estimation using sparse Bayesian Inference. IEEE Transactions on Signal Processing, 61(1), 38–43.

    Article  MathSciNet  Google Scholar 

  13. Chen, C., Lorenzelli, F., Ralph Hudson, K., & Yao, E. (2008). Stochastic maximum-likelihood DOA estimation in the presence of unknown nonuniform noise. IEEE Transactions on Signal Processing, 56(7), 3038–3044.

    Article  MathSciNet  Google Scholar 

  14. Ma, W. K., Hsieh, T. H., & Chi, C. Y. (2010). DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: A Khatri–Rao subspace approach”. IEEE Transactions on Signal Processing, 58(4), 2168–2180.

    Article  MathSciNet  Google Scholar 

  15. Pal, P., & Vaidyanathan, P. P. (2012). Multiple level nested array: anefficient geometry for 2qth order cumulant based array processing. IEEE Transactions on Signal Processing, 60(3), 1253–1269.

    Article  MathSciNet  Google Scholar 

  16. Pal, P., & Vaidyanathan, P. P. (2010). Nested arrays: A novel approach to array processing with enhanced degrees of freedom”. IEEE Transactions on Signal Processing, 58(8), 4167–4181.

    Article  MathSciNet  Google Scholar 

  17. Hu, N., Ye, Z. F., Xu, X., & Bao, M. (2013). DOA estimation for sparse array via sparse signal reconstruction. IEEE Transactions on Aeronautics and Electronic Systems, 49(2), 760–773.

    Article  Google Scholar 

  18. Liu, Z. T., Ruan, X. Y., & He, J. (2013). Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array. Multidimensional Systems and Signal Processing, 24, 105–120.

    Article  MathSciNet  MATH  Google Scholar 

  19. Wong, K. T., & Zoltowski, M. D. (2000). Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace. IEEE Journal of Oceanic Engineering, 25(2), 262–273.

    Article  Google Scholar 

  20. Vaidyanathan, P. P., & Pal, P. (2011). Sparse sensing with co-prime samplers and arrays. IEEE Transactions on Signal Processing, 59(2), 573–586.

    Article  MathSciNet  Google Scholar 

  21. Weng, Z. Y., & Petar, M. D. (2014). A search-free DOA estimation algorithm for coprime arrays. Digital Signal Processing, 24, 27–33.

    Article  Google Scholar 

  22. Liang, G. L., & Han, B. (2014). Near-field sources localization based on co-prime symmetric array. Journal of and Information Technology, 36(1), 135–139.

    Google Scholar 

  23. Liu, S., Yang, L. S., Wu, D. C., & Huang., J. H. (2014). Two-dimensional DOA estimation using a co-prime symmetric cross array. Progress in Electromagnetics Research C, 54, 67–74.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61301120, 51377179), the Fundamental Research Funds for the Central Universities of CQU (CDJPY12160001), and the Natural Science Foundation Project of CQ CSTC (CSTC2011GGYS0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yang, L., Chen, Z. et al. Low-Complexity MUSIC-Like Algorithm with Sparse Array. Wireless Pers Commun 86, 1265–1279 (2016). https://doi.org/10.1007/s11277-015-2987-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2987-9

Keywords

Navigation