Skip to main content
Log in

Improved Geographical Routing in Vehicular Ad Hoc Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Vehicular Ad Hoc Networks (VANET) has emerged to establish communication between intelligent vehicles. The high mobility of vehicles and existing of obstacles in urban area make the communication link between vehicles to be unreliable. In this environment, most geographical routing protocols does not consider stable and reliable link during packet forwarding towards destination. Thus, the network performance will be degraded due to large number of packet losses and high packet delay. In this paper, we propose an improved geographical routing protocol named IG for VANET. The proposed IG incorporates relative direction between source vehicle and candidate vehicles, distance between candidate node and destination and beacon reception rate in order to improve geographical greedy forwarding between intersection. Simulation results show that the proposed routing protocols performs better as compared to the existing routing solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. European-ITS, Eits-technical report 102 638 v1.1.1, European Telecommunications Standards Institute (ETSI). http://www.etsi.org/WebSite/homepage.aspx (2009).

  2. Pereira, P., Casaca, A., Rodrigues, J., Soares, V., Triay, J., & Cervelló-Pastor, C. (2011). From delay-tolerant networks to vehicular delay-tolerant networks. IEEE Communications Surveys & Tutorials, 14(4), 1166–1182.

    Article  Google Scholar 

  3. Soares, V. N., Farahmand, F., & Rodrigues, J. (2009). A layered architecture for vehicular delay-tolerant networksomputer. In IEEE symposium on computers and communications (ISCC) (pp. 122–127). Tunisia: IEEE.

  4. Cabrera, V., Ros, F., & Ruiz, P. (2009). Simulation-based study of common issues in vanet routing protocols. In Proceedings of the 2009 IEEE vehicular technology conference (pp. 1–5). Barcelona: IEEE.

  5. Chen, Y., Lin, Y., & Pan, C. (2010). Dir: Diagonal-intersection-based routing protocol for vehicular ad hoc networks. In Telecommunication systems 10 (1007), pp. 1–18. Netherlands: Springer.

  6. Cheng, P., Lee, K., Gerla, M., & Harri, J. (2010). Geodtn+ nav: Geographic dtn routing with navigator prediction for urban vehicular environments. Mobile Networks and Applications, 15(1), 61–82. Kluwer Academic Publishers.

  7. Djahel, S., & Ghamri-Doudane, Y. (2012). A robust congestion control scheme for fast and reliable dissemination of safety messages in vanets. In Proceeding of the 2012 IEEE conference wireless communications and networking (pp. 2264–2269). France, Paris: IEEE.

  8. Ghafoor, K., & Bakar, K. (2010). A novel delay and reliability aware inter vehicle routing protocol. Network Protocols and Algorithms, 2(2), 66–88.

    Article  Google Scholar 

  9. Soares, V. N., Farahmand, F., & Rodrigues, J. J. (2009). Evaluating the impact of storage capacity constraints on vehicular delay-tolerant networks. In Proceedings of the conference on communication theory, reliability, and quality of service (pp. 75–80). France: IEEE.

  10. Lee, K., Lee, U., & Gerla, M. (2009). To-go: Topology-assist geo-opportunistic routing in urban vehicular grids. In Proceedings of the 2009 IEEE international conference on wireless on-demand network systems and services, Snowbird (pp. 11–18). Utah: IEEE.

  11. Moustafa, H., & Zhang, Y. (2009). Vehicular networks: Techniques, standards and applications (1st ed.). Boca Raton: Auerbach Publications.

    Book  Google Scholar 

  12. Yan, G., & Olariu, S. (2011). A probabilistic analysis of link duration in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1227–1236.

    Article  Google Scholar 

  13. Hasan, S. F., Ding, X., Siddique, N. H., & Chakraborty, S. (2011). Measuring disruption in vehicular communications. IEEE Transactions on Vehicular Technology, 60(1), 148–159.

    Article  Google Scholar 

  14. Paula, M. C., Isento, J. N., Dias, J. A., & Rodrigues, J. J. (2011). A real-world vdtn testbed for advanced vehicular services and applications. In Proceedings of the conference on computer aided modeling and design of communication links and networks (CAMAD) (16–20). Spain: IEEE.

  15. Barr, R. (2004). An efficient, unifying approach to simulation using virtual machines, Ph.D. thesis, Cornell University.

  16. Finn, G. (1987) Routing and addressing problems in large metropolitan-scale internetworks. technical report isi/rr-87-i80.

  17. Basagni, S., Chlamtac, I., Syrotiuk, V., Woodward, B. (1998).A distance routing effect algorithm for mobility (dream). In Proceedings of the 1998 ACM/IEEE international conference on mobile computing and networking (76–84). Dallas, TX: ACM.

  18. Khamayseh, Y. M., BaniYassein, M., AbdAlghani, M., & Mavromoustakis, C. X. (2013). Network size estimation in vanets. Network Protocols and Algorithms, 5(3), 136–152.

    Article  Google Scholar 

  19. Ghafoor, K. Z., Mohammed, M. A., Lloret, J., Bakar, K. A., & Zainuddin, Z. M. (2013). Routing protocols in vehicular ad hoc networks: Survey and research challenges. Network Protocols and Algorithms, 5(4), 39–83.

    Article  Google Scholar 

  20. Bhattacharjee, S., Calvert, K., & Zegura, E. (1998). Self-organizing wide-area network caches. In Proceedings of the 1998 IEEE conference on computer and communications (pp. 600–608). San Francisco: IEEE.

  21. Blum, B., He, T., Son, S., & Stankovic, J. (2003). Igf: A state-free robust communication protocol for wireless sensor networks. Technical report cs-2003-11, Department of Computer Science, University of Virginia.

  22. Jarupan, B., & Ekici, E. (2010). Prompt: A cross-layer position-based communication protocol for delay-aware vehicular access networks. Ad Hoc Networks, 8(5), 489–505.

    Article  Google Scholar 

  23. Lequerica, I., Garcia Longaron, M., & Ruiz, P. (2010). Drive and share: Efficient provisioning of social networks in vehicular scenarios. IEEE Communications Magazine, 48(11), 90–97.

    Article  Google Scholar 

  24. Karp, B., & Kung, H. (2000). Gpsr: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 2000 ACM International Conference on Mobile Computing and Networking (pp. 243–254). Boston, MA: ACM.

  25. Lochert, C., Mauve, M., Fußler, H., & Hartenstein, H. (2005). Geographic routing in city scenarios. Mobile Computing and Communications Review, 9(1), 69–72.

    Article  Google Scholar 

  26. Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., & Mauve, M. (2003). A routing strategy for vehicular ad hoc networks in city environments. In Proceedings of the 2003 IEEE international symposium on intelligent vehicles (156–161) Columbus, Ohio: IEEE.

  27. Nzouonta, J., Rajgure, N., Wang, G., & Borcea, C. (2009). Vanet routing on city roads using real-time vehicular traffic information. IEEE Transactions on Vehicular Technology, 58(7), 3609–3626.

    Article  Google Scholar 

  28. Jerbi, M., Senouci, S., Rasheed, T., & Ghamri-Doudane, Y. (2009). Towards efficient geographic routing in urban vehicular networks. IEEE Transactions on Vehicular Technology, 58(9), 5048–5059.

    Article  Google Scholar 

  29. Sadiq, A., Abu Bakar, K., & Ghafoor, K. Z. (2011). A fuzzy logic approach for reducing handover latency in wireless networks. Network Protocols and Algorithms, 2(4), 61–87.

    Google Scholar 

  30. Choffnes, D., Bustamante, F. (2005). An integrated mobility and traffic model for vehicular wireless networks. In Proceedings of the 2005 ACM international workshop on Vehicular ad hoc networks (pp. 69–78). Cologne: ACM.

  31. Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2009). Vehicle-to-vehicle communication: Fair transmit power control for safety critical information. IEEE Transaction for Vehicular Technology, 58(7), 3684–3703.

    Article  Google Scholar 

  32. Nakagami, M. (1960). The m-distribution-a general formula of intensity distribution of rapid fading. Statistical Method of Radio Propagation, 1, 1–20.

    Google Scholar 

  33. Nikolić, P., Krstic, D., Stefanovic, M., Panić, S., & Destović, F. (2010). Performance evaluation of mrc systems in the presence of nakagami-m fading and shadowing. In Proceedings of the 2010 9th international symposium on electronics and telecommunications (ISETC) (pp. 289–293) IEEE.

  34. Lee, K., Cheng, P., & Gerla, M. (2010). Geocross: A geographic routing protocol in the presence of loops in urban scenarios. Ad Hoc Networks, 8(5), 474–488.

    Article  Google Scholar 

  35. Jarupan, B., & Ekici, E. (2009). Location-and delay-aware cross-layer communication in V2I multihop vehicular networks. IEEE Communications Magazine, 47(11), 112–118.

    Article  Google Scholar 

  36. Wang, X., Yang, Y., & An, J. (2009). Multi-metric routing decisions in vanet. In Proceedings of the 2009 IEEE international conference on dependable, autonomic and secure computing (pp. 551–556). Chengdu: IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Lloret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafoor, K.Z., Lloret, J., Sadiq, A.S. et al. Improved Geographical Routing in Vehicular Ad Hoc Networks. Wireless Pers Commun 80, 785–804 (2015). https://doi.org/10.1007/s11277-014-2041-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-2041-3

Keywords

Navigation