Skip to main content
Log in

Soft Information Combining for Turbo-MIMO Packet Retransmission

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We studied three types of retransmission scheme for turbo-MIMO packet: Chase combining, incremental redundancy, and soft information combining, these three schemes are suitable for different situations. The MIMO channel in each retransmission is correlated in temporal dimension, and a standard method is utilized to simulate the retransmission channel model. Interleaving can shuffle the MIMO channel artificially, so the outage capacity of channel with interleaving is much better than the capacity without interleaving. If using different interleaver in retransmission, the receiver can only combine the retransmitted data after MIMO symbol demapping, we call it “soft information combing”. We find soft information combing is much useful in the true environment, we also find coding gain of incremental redundancy over Chase combining in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stefanov A., Duman T.M. (2001). Turbo-coded modulation for systems with transmit and receive antenna diversity over block fading channels: system model, decoding approaches, and practical considerations. IEEE Journal of Selected Areas in Communi, 19, 958–968

    Article  Google Scholar 

  2. Tonello, A. M. (2000). Space-time bit-interleaved coded modulation with an iterative decoding strategy. In Proceedings IEEE Fall VTC 2000, (Vol. 1, pp. 473–478), September, 2000.

  3. Hochwald B.M., ten Brink S. (2003). Achieving near-capacity on a multiple-antenna channel. IEEE Transations on Communications, 3, 389–399

    Article  Google Scholar 

  4. Chase D. (1985). Code Combining: A maximum-likelihood decoding approach for combining an arbitrary number of noisy packets. IEEE Trans on Communications, 33, 385–393

    Article  Google Scholar 

  5. Kallel S. (1992). Sequential decoding with an efficient incremental redundancy ARQ scheme. IEEE Transactions on Communications, 40, 1588–1593

    Article  MATH  Google Scholar 

  6. Benedetto S., Divsalar D., Montorsi G., Pollara F. (1998). Serial concatenation of interleaved codes: Performance analysis, design, and iterative decoding. IEEE Transactions Information Theory, 44, 909–926

    Article  MATH  MathSciNet  Google Scholar 

  7. Caire G., Taricco G., Biglieri E. (1998). Bit-interleaved coded modulation. IEEE Transactions Information Theory, 44, 927–946

    Article  MATH  MathSciNet  Google Scholar 

  8. Zehavi E. (1992). 8-PSK trellis codes for a Rayleigh channel. IEEE Transaction Communications, 40, 873–884

    Article  MATH  Google Scholar 

  9. Sellathurai M., Haykin S. (2002). Turbo-BLAST for wireless communications: Theory and experiments. IEEE Transaction Signal Processing, 50, 2538–2546

    Article  Google Scholar 

  10. Benedetto S., Divsalar D., Montorsi G., Pollara F. (1997). A soft-input soft-output APP module for iterative decoding of concatenated codes. IEEE Communications Letters, 1, 22–24

    Article  Google Scholar 

  11. Berrou C., Glavieux A. (1996). Near optimum error correcting coding and decoding: turbo-codes. IEEE Transaction on Communications, 44, 1261 – 1271

    Article  Google Scholar 

  12. Jeruchim M.C., Balabon P., Shanmugam K. (2000). Simulation of communication systems: Modeling, methodology and techniques. (2nd ed). US, Plenum

    Google Scholar 

  13. Jakes W.C. (1974). Microwave mobile communications. New York, John Wiley & Sons, Reprinted by IEEE Press, 1998

    Google Scholar 

  14. Telatar, E. Capacity of multiantenna Gaussian channels. (1995). AT&T Bell Labs, Tech. Memo., Jun 1995.

  15. Oh, M.-K., Kwon, Y.-H., & Park, D.-J. (2004). Efficient hybrid ARQ with space-time coding and low-complexity decoding. In Proceedings IEEE. ICASSP ’04, (Vol. 4, pp. 589–592) May 2004.

  16. Onggosanusi, E. N., Dabak, A. G., Hui, Y., & Jeong, G. (2003). Hybrid ARQ transmission and combining for MIMO systems. In Proceedings IEEE. ICC ’03, (Vol. 5, pp. 3205–3209) May 2003.

  17. Koike, T., Murata, H., & Yoshida, S. (2004). Hybrid ARQ scheme suitable for coded MIMO transmission. In Proceeding IEEE. ICC 2004, (vol. 5, pp. 2919–2923) June 2004.

  18. Tong, W., Zhu, P., Jia, M., Ma, J., Zhang, H., & Fong, M.-H. (2004). Soft packet combing for STC re-transmission to improve H-ARQ performance in MIMO Mode. IEEE 802.16 Broadband Wireless Access Working Group. (Date Submitted 2004–07–07).

  19. Krishnaswamy, D., & Kalluri, S. Multi-level weighted combining of retransmitted vectors in wireless transmissions. http://whitepapers.silicon.com

  20. Frenger, P., Parkvall, S., & Dahlman, E. (2001) Vehicular Performance comparison of HARQ with Chase combining and incremental redundancy for HSDPA. In Proceeding IEEE VTC 2001. (vol. 3, pp. 1829–1833) Oct. 2001.

  21. Cheng, J.-F. (2003). On the coding gain of incremental redundancy over chase combining. In Proceedings IEEE GLOBECOM ’03, (Vol. 1, pp. 107 – 112) Dec. 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Yang, Y. Soft Information Combining for Turbo-MIMO Packet Retransmission. Wireless Pers Commun 45, 91–102 (2008). https://doi.org/10.1007/s11277-007-9401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-007-9401-1

Keywords

Navigation