Skip to main content
Log in

Suppression of NLOS errors in TDOA-AOA hybrid localization

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This article handles locating a non-cooperative emitter in cluttered outdoor environments, where many sensors are positioned to locate the emitter. For outdoor localization, this article utilizes Time Difference of Arrival (TDOA) and Angle of Arrival (AOA). In localizing an emitter, Non-Line-Of-Sight (NLOS) errors occur due to an obstacle blocking the LOS path between a sensor and the emitter. We handle the practical scenario in which NLOS errors or signal path modelings are not available. Under this scenario, this article introduces an algorithm to suppress NLOS errors in TDOA-AOA hybrid localization. As far as we know, this article is novel in suppressing NLOS errors in TDOA-AOA hybrid localization. We develop a fast algorithm for suppressing NLOS errors in TDOA-AOA hybrid localization, which is suitable for real-time applications. Numerical simulations are utilized to demonstrate the effectiveness of the proposed hybrid localization approach. Also, simulations show that the hybrid TDOA-AOA localization outperforms both TDOA-only location and AOA-only location in LOS environments as well as in NLOS environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Montminy, M. (2012). Passive geolocation of low-power emitters in urban environments using TDOA. BiblioScholar.

  2. Kim, J. (2021). Direction of arrival estimation using four isotropic receivers. IEEE Instrumentation Measurement Magazine, 24(4), 77–81.

    Article  Google Scholar 

  3. Ma, F., Liu, Z., & Guo, F. (2019). Direct position determination in asynchronous sensor networks. IEEE Transactions on Vehicular Technology, 68(9), 8790–8803.

    Article  Google Scholar 

  4. Chen, C.-S. (2017). A non-line-of-sight error mitigation method for location estimation. International Journal of Distributed Sensor Networks, 13(1), 1550147716682739.

    Article  Google Scholar 

  5. Go, S., & Chong, J.-W. (2015). Improved TOA-based localization method with bs selection scheme for wireless sensor networks. ETRI Journal, 37(4), 707–716.

    Article  Google Scholar 

  6. Ho, T.-J. (2013). Urban location estimation for mobile cellular networks: A fuzzy-tuned hybrid systems approach. IEEE Transactions on Wireless Communications, 12, 2389–2399.

    Article  Google Scholar 

  7. Ristic, B., Arulampalam, S., & Gordon, N. (2004). Beyond the Kalman filter: Particle filters for tracking applications. Artech house radar library.

  8. Kim, J., Suh, T., & Ryu, J. (2017). Bearings-only target motion analysis of a highly manoeuvring target. IET Radar, Sonar and Navigation, 11(6), 1011–1019.

    Article  Google Scholar 

  9. Kim, J. (2019). Obstacle information aided target tracking algorithms for angle-only tracking of a highly maneuverable target in three dimensions. IET Radar, Sonar and Navigation, 13(7), 1074–1080.

    Article  Google Scholar 

  10. Cong, L., & Zhuang, W. (2002). Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems. IEEE Transactions on Wireless Communications, 1(3), 439–447.

    Article  Google Scholar 

  11. Bishop, A. N., Fidan, B., Doğançay, K., Anderson, B. D., & Pathirana, P. N. (2008). Exploiting geometry for improved hybrid AOA/TDOA-based localization. Signal Processing, 88(7), 1775–1791.

    Article  MATH  Google Scholar 

  12. Yin, J., Wan, Q., Yang, S., & Ho, K. C. (2016). A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Processing Letters, 23(1), 144–148.

    Article  Google Scholar 

  13. Xu, C., Wang, Z., Wang, Y., Wang, Z., & Yu, L. (2020). Three passive TDOA-AOA receivers-based flying-UAV positioning in extreme environments. IEEE Sensors Journal, 20(16), 9589–9595.

    Google Scholar 

  14. Cheung, K. W., So, H. C., Ma, W.-K., & Chan, Y. T. (2006). A constrained least squares approach to mobile positioning: Algorithms and optimality. EURASIP Journal on Advances in Signal Processing, 2006, 1–23.

    Article  Google Scholar 

  15. Cheng, L., Wu, H., Wu, C., & Zhang, Y. (2013). Indoor mobile localization in wireless sensor network under unknown NLOS errors. International Journal of Distributed Sensor Networks, 9(2), 208904.

    Article  Google Scholar 

  16. Riba, J., & Urruela, A. (May 2004). A non-line-of-sight mitigation technique based on ml-detection. In 2004 IEEE international conference on acoustics, speech, and signal processing, (vol. 2, pp. II 153 – 156). Germany

  17. Boccadoro, M., Angelis, G. D., & Valigi, P. (2012). TDOA positioning in NLOS scenarios by particle filtering. Wireless Networks, 18(5), 579–589.

    Article  Google Scholar 

  18. Tang, H., Park, Y., & Qiu, T. (2007). A TOA-AOA-based NLOS error mitigation method for location estimation. EURASIP Journal on Advances in Signal Processing, 2008(682528), 1–14.

    MATH  Google Scholar 

  19. Mitra, R., Kaddoum, G., Dahman, G., & Poitau, G. (2021). Error analysis of localization based on minimum-error entropy with fiducial points. IEEE Communications Letters, 25(4), 1187–1191.

    Article  Google Scholar 

  20. Chao, W.-K., & Lay, K. (2007). Mobile positioning and tracking based on TOA/TSOA/TDOA/AOA with NLOS-reduced distance measurements. IEICE Transactions on Communications, 90–B, 3643–3653.

    Article  Google Scholar 

  21. Wang, G., So, A.M.-C., & Li, Y. (2016). Robust convex approximation methods for TDOA-based localization under NLOS conditions. IEEE Transactions on Signal Processing, 64(13), 3281–3296.

    Article  MATH  Google Scholar 

  22. Shikur, B. Y., & Weber, T. (2014). TDOA/AOD/AOA localization in NLOS environments. In 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 6518–6522.

  23. Chen, P. C. (1999). A non-line-of-sight error mitigation algorithm in location estimation, In Wireless communications and networking conference (pp. 316–320). USA: IEEE.

  24. Guvenc, I., & Chong, C.-C. (2009). A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Communications Surveys and Tutorials, 11(3), 107–124.

    Article  Google Scholar 

  25. Chan, Y.-T., Tsui, W.-Y., So, H.-C., & Chung Ching, P. (2006). Time-of-arrival based localization under NLOS conditions. IEEE Transactions on Vehicular Technology, 55(1), 17–24.

    Article  Google Scholar 

  26. Pang, L. L., Xie, J. Y., Lu, S. Y., & Lv, Q. C. (2016). “A nlos error suppression algorithm based on elastic enclosing circle,” In. IEEE international conference on ubiquitous wireless broadband (ICUWB),2016, 1–4.

  27. Hua, J., Yin, Y., Lu, W., Zhang, Y., & Li, F. (2018). NLOS identification and positioning algorithm based on localization residual in wireless sensor networks. Sensors, 18(9), 2991.

    Article  Google Scholar 

  28. Li, J., Liu, J., Xu, H., & Sun, J. (2004). Nlos error mitigation and mobile tracking. in Proceedings 7th international conference on signal processing, 2004. Proceedings. ICSP ’04. 2004., vol. 3, pp. 2453–2456 vol.3.

  29. Wylie, M., & Holtzmann, J. (1996). The non-line-of-sight problem in mobile location estimation. In IEEE international conference on universal personal communications, Cambridge, MA, (pp. 827 – 831).

  30. Wann, C.-D., Yeh, Y.-J., & Hsueh, C.-S. (2006). Hybrid TDOA/AOA indoor positioning and tracking using extended Kalman filters. In 2006 IEEE 63rd vehicular technology conference, (vol. 3, pp. 1058–1062).

  31. Zeng, Z., Liu, S., & Wang, L. (2018). “A novel NLOS mitigation approach for TDOA based on imu measurements,” In IEEE wireless communications and networking conference (WCNC),2018, pp. 1–6.

  32. Wu, C., Hou, H., Wang, W., Huang, Q., & Gao, X. (2018). TDOA based indoor positioning with NLOS identification by machine learning. In 2018 10th international conference on wireless communications and signal processing (WCSP), pp. 1–6.

  33. Su, Z., Shao, G., & Liu, H. (2018). Semidefinite programming for NLOS error mitigation in TDOA localization. IEEE Communications Letters, 22(7), 1430–1433.

    Article  Google Scholar 

  34. Yang, K., Wang, G., & Luo, Z.-Q. (2009). Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals. IEEE Transactions on Signal Processing, 57(7), 2775–2784.

    Article  MATH  Google Scholar 

  35. Apolinário, J. A., Yazdanpanah, H., Nascimento, A. S., & de Campos, M. (2019). A data-selective ls solution to TDOA-based source localization,” In ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 4400–4404.

  36. Maggs, M. K., O’Keefe, S. G., & Thiel, D. V. (2012). Consensus clock synchronization for wireless sensor networks. IEEE Sensors Journal, 12(6), 2269–2277.

    Article  Google Scholar 

  37. Lasassmeh, S. M., & Conrad, J. M. (2010). Time synchronization in wireless sensor networks: A survey. In Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), pp. 242–245.

  38. Young, K. K., David, H., & Sehoon, K. (2019). Time synchronization for wireless sensors using low-cost gps module and arduino. Frontiers in Built Environment, 4, 1–16.

    Google Scholar 

  39. Rappaport, T., Reed, J., & Woerner, B. (1996). Position location using wireless communications on highways of the future. IEEE Communications Magazine, 34(10), 33–41.

    Article  Google Scholar 

  40. Cheung, K. W., So, H. C., Ma, W.-K., & Chan, Y. T. (2006). A constrained least squares approach to mobile positioning: Algorithms and optimality. EURASIP Journal on Applied Signal Processing, 2006, 1–23.

    Google Scholar 

  41. Torrieri, D. J. (1984). Statistical theory of passive location systems. IEEE Transactions on Aerospace and Electronic Systems, 20(2), 183–198.

    Article  Google Scholar 

  42. lora. (2021). Lora. Website, https://lora-alliance.org/.

  43. Jia, C., Yin, J., Wang, D., & Zhang, L. (2018). Lagrange programming neural network for TOA-based localization with clock asynchronization and sensor location uncertainties. Sensors (Basel), 18(7), 1–21.

    Article  Google Scholar 

  44. Ricciato, F., Sciancalepore, S., Gringoli, F., Facchi, N., & Boggia, G. (2018). Position and velocity estimation of a non-cooperative source from asynchronous packet arrival time measurements. IEEE Transactions on Mobile Computing, 17(9), 2166–2179.

    Article  Google Scholar 

  45. Wu, D., Liu, Q., Zhang, Y., McCann, J., Regan, A., & Venkatasubramanian, N. (2014). Crowdwifi: Efficient crowdsensing of roadside wifi networks. in Proceedings of the 15th international middleware conference, ser. Middleware ’14. New York, NY, USA: Association for Computing Machinery, p. 229-240.

  46. Zhang, Y., Bao, L., Yang, S.-H., Welling, M., & Wu, D. (2010). Localization algorithms for wireless sensor retrieval. The Computer Journal, 53(10), 1594–1605.

    Article  Google Scholar 

  47. Wann, C., & Chin, H. (2007). “Hybrid toa/rssi wireless location with unconstrained nonlinear optimization for indoor uwb channels,” In. IEEE wireless communications and networking conference,2007, 3940–3945.

  48. Tomic, S., Beko, M., Dinis, R., & Bernardo, L. (2018). On target localization using combined RSS and AOA measurements. Sensors, 18(4), 1266.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghoek Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J. Suppression of NLOS errors in TDOA-AOA hybrid localization. Wireless Netw 29, 657–667 (2023). https://doi.org/10.1007/s11276-022-03158-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03158-8

Keywords

Navigation