Skip to main content
Log in

User behavior and user experience analysis for social network services

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The user behavior characteristics of mobile social network services are of guiding significance to the evaluation of user experience, and test cases and test scenarios should be designed according to user behavior characteristics. Current studies have heavily addressed the action sequence and the frequency distribution of user behavior. However, there is little research on the amount of user action triggered by the communication angle and the fluctuation of the user’s action communication performance under different scenarios. This paper analyzes the distribution of data concerning different user actions and tests the waiting time and success rate of different user actions in different scenes. The results suggest that the complex scenarios can consist of some typical user behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wang, Y., Li, P. L., Jiao, L., et al. (2017). A data-driven architecture for personalized QoE management in 5G wireless networks. IEEE Wireless Communications, 24(1), 102–110.

    Article  Google Scholar 

  2. Jiang, D., Wang, W., Shi, L., & Song, H. (2018). A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Transactions on Network Science and Engineering.. https://doi.org/10.1109/tnse.2018.2877597.

    Article  Google Scholar 

  3. Jiang, D., Huo, L., & Song, H. (2018). Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Transactions on Network Science and Engineering, 1(2), 1–12.

    Google Scholar 

  4. Zhu, J., Song, Y., Jiang, D., & Song, H. (2018). A new deep-Q-learning-based transmission scheduling mechanism for the cognitive Internet of Things. IEEE Internet of Things Journal, 5(4), 2375–2385.

    Article  Google Scholar 

  5. Cao, X., Yoshikane, N., Popescu, I., et al. (2017). Software-defined optical networks and network abstraction with functional service design. IEEE/OSA Journal of Optical Communications and Networking, 9(4), C65–C75.

    Article  Google Scholar 

  6. Jiang, D., Huo, L., Lv, Z., Song, H., & Qin, W. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems, 19(10), 3305–3319.

    Article  Google Scholar 

  7. Wunder, G., Jung, P., Kasparick, M., et al. (2014). 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Communications Magazine, 52(2), 97–105.

    Article  Google Scholar 

  8. Cui, Q., Gu, Y., Ni, W., & Liu, R. P. (2017). Effective capacity of licensed-assisted access in unlicensed spectrum for 5G: From theory to application. IEEE Journal on Selected Areas in Communications, 35(8), 1754–1767.

    Article  Google Scholar 

  9. Jiang, D., Li, W., & Lv, H. (2017). An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing, 2017(220), 160–169.

    Article  Google Scholar 

  10. Huo, L., & Jiang, D. (2019). Stackelberg game-based energy-efficient resource allocation for 5G cellular networks. Telecommunication Systems, 23(4), 1–11.

    Google Scholar 

  11. Huo, L., Jiang, D., & Lv, Z. (2018). Soft frequency reuse-based optimization algorithm for energy efficiency of multi-cell networks. Computers & Electrical Engineering, 66(2), 316–331.

    Article  Google Scholar 

  12. Jiang, D., Zhang, P., Lv, Z., et al. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal, 3(6), 1437–1447.

    Article  Google Scholar 

  13. Wang, F., Jiang, D., & Qi, S. (2019). An adaptive routing algorithm for integrated information networks. China Communications, 7(1), 196–207.

    Google Scholar 

  14. Lv, Z., Kong, W., Zhang, X., Jiang, D., Lv, H., & Lu, X. (2019). Intelligent security planning for regional distributed energy internet. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/tii.2019.2914339.

    Article  Google Scholar 

  15. Chen, L., Jiang, D., Song, H., et al. (2018). A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access, 6, 15408–15419.

    Article  Google Scholar 

  16. Wu, D., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communications, 2(4), 630–643.

    Google Scholar 

  17. Shehab, M., Alves, H., & Latva-aho, M. (2019). Effective capacity and power allocation for machine-type communication. IEEE Transactions on Vehicular Technology, 68(4), 4098–4102.

    Article  Google Scholar 

  18. Guo, C., Liang, L., & Li, G. Y. (2019). Resource allocation for low-latency vehicular communications: An effective capacity perspective. IEEE Journal on Selected Areas in Communications, 37(4), 905–917.

    Article  Google Scholar 

  19. Xiao, C., Zeng, J., Ni, W., Liu, R. P., Su, X., & Wang, J. (2019). Delay guarantee and effective capacity of downlink NOMA fading channels. IEEE Journal of Selected Topics in Signal Processing, 13(3), 508–523.

    Article  Google Scholar 

  20. Jiang, D., Huo, L., & Li, Y. (2018). Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE, 13(5), 1–23.

    Google Scholar 

  21. Xiong, Y., Li, Y., Zhou, B., et al. (2018). SDN enabled restoration with triggered precomputation in elastic optical inter-datacenter networks. IEEE/OSA Journal of Optical Communications and Networking, 10(1), 24–34. https://doi.org/10.1364/jocn.10.000024.

    Article  Google Scholar 

  22. Filer, M., Gaudette, J., Ghobadi, M., et al. (2016). Elastic optical networking in the microsoft cloud. Journal of Optical Communications and Networking, 8(7), A45–A54.

    Article  Google Scholar 

  23. Tanaka, T., Inui, T., Kadohata, A., et al. (2016). Multiperiod IP-over-elastic network reconfiguration with adaptive bandwidth resizing and modulation. Journal of Optical Communications and Networking, 8(7), A180–A190.

    Article  Google Scholar 

  24. Sun, M., Jiang, D., Song, H., et al. (2017). Statistical resolution limit analysis of two closely-spaced signal sources using Rao test. IEEE Access, 5, 22013–22022.

    Article  Google Scholar 

  25. Jiang, M., Jiang, L., Jiang, D., Li, F., & Song, H. (2018). A sensor dynamic measurement errors prediction model of sensors based on NAPSO-SVM. Sensors, 18(233), 1–14.

    Google Scholar 

  26. Patri, S. K., Grigoreva, E., Kellerer, W., et al. (2019). Rational agent-based decision algorithm for strategic converged network migration planning. IEEE/OSA Journal of Optical Communications and Networking, 11(7), 371–382.

    Article  Google Scholar 

  27. Zhang, H., Wang, Y., Qiu, X., et al. (2015). Network operation simulation platform for network virtualization environment. In 17th Asia-Pacific network operations and management symposium (APNOMS). https://doi.org/10.1109/apnoms.2015.7275351.

  28. Jiang, D., Xu, Z., & Xu, H. (2015). A novel hybrid prediction algorithm to network traffic. Annals of Telecommunications, 70(9), 427–439.

    Article  Google Scholar 

  29. China social networking application user behavior research report. China Internet network information center (2014) (in Chinese).

  30. Jin, Y., Duffield, N., Haffner, P., et al. (2011). Can’t see forest through the trees. In Proceedings of 9th workshop on mining and learning with graphs. San Diego, USA.

  31. Schneider, F., Feldmann, A., Krishnamurthy, B., et al. (2009). Understanding online social network usage from a network perspective. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference. Chicago, USA.

  32. Zhang, S., Zhao, Z., Guan, H., & Yang, H. (2017). A modified poisson distribution for smartphone background traffic in cellular networks. International Journal of Communication Systems, 30(6), e3117.

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Natural Science Foundation of Jiangsu Province of China (No. BK20161165); the applied fundamental research Foundation of Xuzhou of China (No. KC17072); and the Open Fund of the Jiangsu Province Key Laboratory of Intelligent Industry Control Technology, Xuzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, R., Chen, L. & Cui, P. User behavior and user experience analysis for social network services. Wireless Netw 27, 3613–3619 (2021). https://doi.org/10.1007/s11276-019-02233-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02233-x

Keywords

Navigation