Skip to main content
Log in

Effects of shadowing on the number of active users in random multi-user channels

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Prior work has addressed the effects of multipath fading and path loss separately for broadcast and multiple-access channels. It has been shown that the number of simultaneously active users are of the order \(\Theta (\ln (\ln (n)))\) for random channel gains with exponentially-decaying tails, where n is the total number of users. Furthermore, it has been shown that assuming path loss is dominant and ignoring multipath fading, the user capacity (i.e. the maximum number of simultaneously active users in a wireless system) of multi-user channels is of the order \(\Theta (\ln (n))\) when the users are spatially distributed on the plane with a Gaussian or Uniform distribution. In this paper, we study the shadowing effects on the number of active users for broadcast and multiple-access channels in which the users are randomly distributed on the plane. It is shown that as the total number of users in the multi-user channel goes to infinity, the number of active users is of the order \(\Theta (\sqrt{\ln (n)}).\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ataman, S., & Wautier, A. (2006). Capacity and asymptotic user capacity of a multiservice CDMA uplink with successive interference cancellation. In IEEE International symposium on personal, indoor and mobile radio communications (PIMRC), Helsinki, Finland, pp. 1–5. doi:10.1109/PIMRC.2006.254327.

  2. Boppanna, S., & Shea, J. M. (2006). Downlink user capacity of cellular systems: TDMA vs. dirty paper coding. In IEEE international symposium information theory (ISIT), Seattle, WA, USA, pp. 754–758. doi:10.1109/ISIT.2006.261633.

  3. Cimini, L. J, Jr, Foschini, G. J., & Shepp, L. A. (1994). Single-channel user-capacity calculations for self-organizing cellular systems. IEEE Transactions on Communications, 42(12), 3137–3143. doi:10.1109/26.339834.

    Article  Google Scholar 

  4. Viswanath, P., & Anantharam, V. (1999). User capacity of a power controlled CDMA system with multiple base stations. In IEEE workshop in transactions on information theory and communications, Kruger National Park, pp. 21–23. doi:10.1109/ITCOM.1999.781395.

  5. Kishore, S., Greenstein, L. J., Poor, V., & Schwartz, S. C. (2006). Uplink user capacity in a multicell CDMA system with hotspot microcells. IEEE Transactions on Wireless Communications, 5(6), 1333–1342. doi:10.1109/TWC.2006.1638654.

    Article  Google Scholar 

  6. Viswanath, P., Anantharam, V., & Tse, D. N. C. (1999). Optimal sequences, power control, and user capacity of synchronous CDMA systems with linear MMSE multiuser receivers. IEEE Transactions on Information Theory, 45(6), 1968–1983. doi:10.1109/18.782119.

    Article  MathSciNet  MATH  Google Scholar 

  7. Keshavarz, H., Xie, L. L., & Mazumdar, R. R. (2008). On the optimal number of active receivers in fading broadcast channels. IEEE Transactions on Information Theory, 54(3), 1323–1327. doi:10.1109/TIT.2007.915918.

    Article  MathSciNet  MATH  Google Scholar 

  8. Keshavarz, H., Mazumdar, R. R., & Xie, L. L. (2009). User capacity scaling laws for fading multiple-access channels. IEEE Transactions on Wireless Communications, 8(9), 4498–4507. doi:10.1109/TWC.2009.080399.

    Article  Google Scholar 

  9. Etminan, J., & Keshavarz, H. (2014). Effects of spatial receiver distributions on the user capacity of broadcast channels. International Journal of Electronics and Communications, 68(1), 79–83.

    Article  Google Scholar 

  10. Proakis, J. G., & Salehi, M. (2007). Digital communications (5th ed.). New York, NY: McGraw-Hill.

    Google Scholar 

  11. Goldsmith, A. (2005). Wireless communications. Cambridge, NY: Cambridge University Press.

    Book  Google Scholar 

  12. Charlambous, C., & Menemenlis, N. (1999). Stochastic models for long-term multipath fading channels and their statistical properties. In Proceedings of the IEEE CDC.

  13. Salo, J., Vuokko, L., & Vainikainen, P. (2005). Why is shadow fading lognormal. In Proceedings of the IWS 2005/WMPC ’05, Aalborg, Denmark.

  14. Héliot, F., Ghavami, M., & Nakhai, M. R. (2008). On accurate closed-form approximation of the average probability of error over a log-normal fading channel. IEEE Transactions on Wireless Communications, 7(5), 1495–1500. doi:10.1109/TWC.2008.080399.

    Article  Google Scholar 

  15. Foester, J., & Li, Q. (2002). UWB channel modeling contribution from Intel. In IEEE P802.15 working group for wireless personal area networks (WPANs). Technical report; P802.15-02/490rl-SG3a.

  16. Motwani, R., & Raghavan, P. (1995). Randomized algorithms. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  17. Boutros, J., & Caire, G. (2002). Iterative multiuser joint decoding: unified framework and asymptotic analysis. IEEE Transactions on Information Theory, 48(7), 1772–1793. doi:10.1109/TIT.2002.1013125.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi R. Mazumdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etminan, J., Keshavarz, H. & Mazumdar, R.R. Effects of shadowing on the number of active users in random multi-user channels. Wireless Netw 22, 2501–2509 (2016). https://doi.org/10.1007/s11276-015-1106-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1106-x

Keywords

Navigation