Skip to main content
Log in

Hybrid QoS based routing protocol for inter and intra wireless mesh infrastructure communications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Quality of service (QoS) in wireless mesh networks is an active area of research, which is driven by the increasing demand for real-time and multimedia applications, such as Voice over IP and Video on Demand. In this paper, we propose a novel QoS based routing protocol for wireless mesh infrastructure, called Hybrid QoS Mesh Routing (HQMR). It is composed of two QoS based routing sub-protocols: a reactive multi-metric routing protocol for intra-infrastructure communications and a proactive multi-tree based routing protocol for communications with external networks. The proposed routing protocol enables forwarding real-time and streaming applications with QoS guarantee in a mesh wireless environment, by assigning a specific routing path for each defined service class. To this end, three different QoS service classes are defined, depending on the applications requirements. We analyze in this paper the simulation results of different scenarios conducted on the network simulator ns-3 to demonstrate the effectiveness of the HQMR protocol and to compare it to other routing protocols while forwarding real-time applications with QoS guarantee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Akyildiz, I. F., & Wang, X. (2005). A survey on wireless mesh networks. IEEE Communications Magazine, 43(9), S23–S30.

    Article  Google Scholar 

  2. Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487.

    Article  MATH  Google Scholar 

  3. Acampora, G., Gaeta, M., Loia, V., & Vasilakos, A. V. (2010). Interoperable and adaptive fuzzy services for ambient intelligence applications. ACM Transactions on Autonomous and Adaptive Systems, 5(2), 8:1–8:26.

    Article  Google Scholar 

  4. Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. M. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

  5. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2011). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  6. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2012). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  7. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  8. Duarte, P. B. F., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  9. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computing, PP(99), 1.

  10. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In Proceedings IEEE INFOCOM (pp. 100–108).

  11. Yen, Y.-S., Chao, H.-C., Chang, R.-S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11–12), 2238–2250.

    Article  Google Scholar 

  12. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  13. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  14. Marwaha, S., Srinivasan, D., Tham, C. K., & Vasilakos, A. (2004). Evolutionary fuzzy multi-objective routing for wireless mobile ad hoc networks. In Congress on evolutionary computation, CEC’04 (Vol. 2, pp. 1964–1971).

  15. Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  16. “Ad hoc On-Demand Distance Vector Routing (AODV).” [Online]. http://www.ietf.org/rfc/rfc3561.txt. Accessed September 22, 2015.

  17. “Optimized Link State Routing (OLSR).” [Online]. http://www.ietf.org/rfc/rfc3626.txt. Accessed September 22, 2015.

  18. “The Dynamic Source Routing Protocol (DSR).” [Online]. http://www.ietf.org/rfc/rfc4728.txt. Accessed September 22, 2015.

  19. Woungang, I., Dhurandher, S. K., Anpalagan, A., & Vasilakos, A. V. (Eds.). (2013). Routing in opportunistic networks. New York: Springer.

    MATH  Google Scholar 

  20. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS) (pp. 182–190).

  21. Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  22. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 818–831.

    Article  MathSciNet  Google Scholar 

  23. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2011). Delay tolerant networks: Protocols and applications (1st ed.). Boca Raton, FL: CRC Press Inc.

    Google Scholar 

  24. Dvir, A., & Vasilakos, A. V. (2010). Backpressure-based routing protocol for DTNs. In Proceedings of the ACM SIGCOMM conference, New York, NY, USA (pp. 405–406).

  25. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  26. Xue, Q., & Ganz, A. (2002). QoS routing for mesh-based wireless LANs. International Journal of Wireless Information Networks, 9(3), 179–190.

    Article  Google Scholar 

  27. Xue, Q., & Ganz, A. (2003). Ad hoc QoS on-demand routing (AQOR) in mobile ad hoc networks. Journal of Parallel and Distributed Computing, 63(2), 154–165.

    Article  MATH  Google Scholar 

  28. Draves, R., Padhye, J., & Zill, B. (2004). Comparison of routing metrics for static multi-hop wireless networks. New York, NY (pp. 133–144).

  29. Kone, V., Das, S., Zhao, B. Y., & Zheng, H. (2007). QUORUM: Quality of service in wireless mesh networks. Mobile Networks and Applications, 12(5), 358–369.

    Article  Google Scholar 

  30. Pal, A., & Nasipuri, A. (2011). A quality based routing protocol for wireless mesh networks. Pervasive and Mobile Computing, 7(5), 611–626.

    Article  Google Scholar 

  31. Liu, L., Zhu, L., Lin, L., & Wu, Q. (2012). Improvement of AODV routing protocol with QoS support in wireless mesh networks. Physics Procedia, 25, 1133–1140.

    Article  Google Scholar 

  32. Zhang, Y., Wei, Y., Song, M., & Song, J. (2006). R-AODV: Rate aware routing protocol for WiFi mesh networks. In IET International Conference on Wireless, Mobile and Multimedia Networks (pp. 1–4).

  33. Cheng, X., Mohapatra, P., Lee, S.-J., & Banerjee, S. (2008). MARIA: Interference-aware admission control and QoS routing in wireless mesh networks. In IEEE international conference on communications, ICC’08 (pp. 2865–2870).

  34. Malgi, M. A., & Gaikwad, G. N. (2015). A study on QoS enhancement of MPEG-4 video transmission over wireless mesh network. In International conference on pervasive computing (ICPC) (pp. 1–5).

  35. Zhou, L., Xiong, N., Shu, L., Vasilakos, A., & Yeo, S.-S. (2010). Context-aware middleware for multimedia services in heterogeneous networks. IEEE Intelligent Systems, 25(2), 40–47.

    Article  Google Scholar 

  36. Yun, J., Han, J., Seong, G., Cho, W., Seo, J., Khan, M., Kim, B., Park, G., & Han, K. (2014). Self-organized multi-metric routing for QoS in wireless mesh networks. In International conference on information networking (ICOIN) (pp. 160–163).

  37. Lu, Q., Ma, Y., & Zhang, J. (2009). A study of the active router structure. In International colloquium on computing, communication, control, and management, CCCM’09 (Vol. 1, pp. 157–160).

  38. IEEE Standard for Information Technology–Telecommunications and information exchange between systems–Local and metropolitan area networks–Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 10: Mesh Networking. (2011). (pp. 1–372).

  39. IEEE Standard for Information technology–Telecommunications and information exchange between systems Local and metropolitan area networks–Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (2012). IEEE Std 80211-2012 (pp. 1–2793).

  40. Ueda, K., & Baba, K.-I. (2009). Proposal of an initial route establishment method in wireless mesh networks. In Annual international symposium on applications and the internet, SAINT’09 (pp. 173–176).

  41. Maurina, S., Riggio, R., Rasheed, T., & Granelli, F. (2009). On tree-based routing in multi-gateway association based wireless mesh networks. In IEEE 20th international symposium on personal, indoor and mobile radio communications (pp. 1542–1546).

  42. Wenjiang, J. , Jianfeng, M., Zhuo, M., & Youliang, T. (2012). Tree-based proactive routing protocol for wireless mesh network. China Communications, 9(1), 25–33.

  43. Madhusudan, S., Lee, S.-G., & Lee, H. J. (2013). Non-root-based hybrid wireless mesh protocol for wireless mesh networks. International Journal of Smart Home, 7(2), 71–84.

  44. Bargaoui, H., Mbarek, N., Togni, O., & Frikha, M. (2014). Hybrid QoS based routing for IEEE 802.16j mesh infrastructure. In The Tenth advanced international conference on telecommunications (pp. 110–118).

  45. Ad hoc On-Demand Distance Vector Routing (AODV). [Online]. http://www.ietf.org/rfc/rfc3561.txt. Accessed September 22, 2015.

  46. ns-3. [Online]. http://www.nsnam.org/. Accessed September 22, 2015.

Download references

Acknowledgments

This work has been funded by the regional Council of Burgundy, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajer Bargaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bargaoui, H., Mbarek, N., Togni, O. et al. Hybrid QoS based routing protocol for inter and intra wireless mesh infrastructure communications. Wireless Netw 22, 2111–2130 (2016). https://doi.org/10.1007/s11276-015-1091-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1091-0

Keywords

Navigation