Skip to main content
Log in

High capacity wireless multimedia transmission with unequal error protection over Rayleigh fading channel

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Efficient use of the available bandwidth and power resources for real-time multimedia transmission with high data rate and quality of service guarantee is one of the main challenges for next generation wireless systems. In image and video applications, the reception quality is highly sensitive to transmission delay, data loss, and error performance. Therefore, feasible transmission techniques over realistic channel conditions and detection methods are required to meet the increasing demands of multimedia services. In this paper, adaptive real-time communication (ARTC) system based superposition coding and layered detection is proposed for higher capacity visual data transmission over Rayleigh fading channel with unequal error protection (UEP). In the transmitter side, the source data is splitted into two streams depending on their importance, high priority and low priority. These two bit streams are modulated individually using different adjustable power allocation ratio according to partial feedback of channel state information with a constraint of total transmitted power during every symbol period. The received signal is detected using low complexity layered receiver with successive interference cancellation. To evaluate the system performance, constellation constrained capacity formula is derived. Under same resources of bandwidth, power, and time, extensive simulation results demonstrate the effectiveness of proposed ARTC scheme and shows significant improvement in capacity and bit-error-rate compared with the conventional direct single stream transmission and hierarchical modulation. Furthermore, the unequal importance characteristics of visual data are well exploited to attain reliable communication with UEP property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Parkvall, S., Furuskar, A., & Dahlman, E. (2011). Evolution of LTE toward IMT-advanced. IEEE Communications Magazine, 49(2), 84–91.

    Article  Google Scholar 

  2. Sabir, M., Bovik, A., & Heath, R. W. (2010). Unequal power allocation for JPEG transmission over MIMO systems. IEEE Transactions on Image Processing, 19(2), 410–421.

    Article  MathSciNet  Google Scholar 

  3. Song, D., & Chen, C. (2007). Scalable H.264/AVC video transmission over MIMO wireless systems with adaptive channel selection based on partial channel information. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1218–1226.

    Article  MathSciNet  Google Scholar 

  4. Alay, O., Korakis, T., Wang, Y., Erkip, E., & Panwar, S. (2010). Layered wireless video multicast using relays. IEEE Transactions on Circuits and Systems for Video Technology, 20(8), 1095–1109.

    Article  Google Scholar 

  5. Tillo, T., Baccaglini, E., & Olmo, G. (2011). Unequal protection of video data according to slice relevance. IEEE Transactions on Image Processing, 20(6), 1572–1582.

    Article  MathSciNet  Google Scholar 

  6. Lewcio, B., Belmudez, B., Mehmood, A., Waltermann, M., & Moller, S. (2011). Video quality in next generation Mobile networks-perception of time-varying transmission. In IEEE international workshop technical committe on communication quality and reliability, pp. 1–6.

  7. Fernandez, J., Taleb, T., Guizani, M., & Kato, N. (2009). Bandwidth aggregation-aware dynamic QoS negotiation for real-time video streaming in next-generation wireless networks. IEEE Transactions on Multimedia, 11(6), 1082–1093.

    Article  Google Scholar 

  8. Manni, E., & Katsaggelos, A. (2010). Unequal error protection for robust streaming of scalable video over packet lossy networks. IEEE Transactions Circuits and Systems for Video Technology, 20(3), 407–416.

    Article  Google Scholar 

  9. Baruffa, G., Micanti, P., & Frescura, F. (2009). Error protection and interleaving for wireless transmission of JPEG 2000 images and video. IEEE Transactions on Image Processing, 18(2), 346–356.

    Article  MathSciNet  Google Scholar 

  10. Cao, L. (2007). On the unequal error protection for progressive image transmission. IEEE Transactions on Image Processing, 16(9), 2384–2388.

    Article  MathSciNet  Google Scholar 

  11. Xu, J., Shen, X., Mark, J., & Cai, J. (2004). Quasi-optimal channel assignment for real-time video in OFDM wireless systems. IEEE Transactions on Wireless Communications, 7(4), 1417–1427.

    Google Scholar 

  12. Yang, G., Shen, D., & Victor, O. K. (2004). UEP for video transmission in space-time coded OFDM system. Proceedings of IEEE INFOCOM, 2, 1200–1210.

    Google Scholar 

  13. Hellege, C., Gomez-Barquero, D., Schierl, T., & Wiegand, T. (2011). Layered-aware forward error correction for mobile broadcast of layered media. IEEE Transactions on Multimedia, 13(3), 551–562.

    Article  Google Scholar 

  14. Pei, Y., & Modestino, J. (2006). Performance of multilayered video encoding and delivery over lossy channels using a joint source-channel coding approach. Wireless Personal Communications, 36, 113–128.

    Article  Google Scholar 

  15. Souto, N., Cercas, F., Dinis, R., & Silva, J. (2007). On the BER performance of hierarchical M-QAM constellations with diversity and imperfect channel estimation. IEEE Transactions on Communications, 55(10), 1852–1856.

    Article  Google Scholar 

  16. Jiang, H., & Wilford, P. (2005). A hierarchical modulation for upgrading digital broadcast systems. IEEE Transactions on Broadcasting, 51(2), 223–229.

    Article  Google Scholar 

  17. Correia, A., Souto, N., Soares, A., Dinis, R., & Silva, J. (2009). Multiresolution with hierarchical modulations for long term evolution of UMTS. EURASIP Journal on Wireless Communcations and Networking. doi:10.1155/2009/240140.

  18. Gadkari, S., & Rose, K. (1999). Time-division versus superposition coded modulation schemes for unequal error protection. IEEE Transactions on Communications, 47(3), 370–379.

    Article  MATH  Google Scholar 

  19. Tahir, Y., Al-Hussaibi, W., Ng, C., Noordin, N., & Al-Hemyari, A. (2008). Unequal error protection for wireless data transmission using superposition coding with feedback. In Proceedings of the 5th innovations’08 (pp. 426–429), UAE, December 2008.

  20. Tahir, Y., Al-Hussaibi, W., Ng, C., Noordin, N., & Ali, B. (2012). High reliability of real-time visual data transmission using superposition coding with receiver diversity. Journal of Telecommunication Systems (accepted).

  21. Al-Hussaibi, W., & Ali, F. (2011). On the capacity region of promissing multiple access techniques. In Proceedings of the 12th PGNet2011 (pp. 403–408), UK, June 2011.

  22. Vanka, S., Srinivasa, S., Gong, Z., Vizi, P., Stamatiou, K., & Haenggi, M. (2012). Superposition coding strategies: design and experimental evaluation. IEEE Transactions on Wireless Communications, 11(7), 2628–2639.

    Article  Google Scholar 

  23. Cover, T., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). New Jersey: Wiley.

    MATH  Google Scholar 

  24. Ungerboeck, G. (1982). Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, IT-28(1), 55–66.

    Article  MathSciNet  Google Scholar 

  25. Al-Hussaibi, W., & Ali, F. (2012). Generation of correlated Rayleigh fading channels for accurate simulation of promising wireless communication systems. Simulation Modelling Practice and Theory, 25(4), 56–72.

    Article  Google Scholar 

  26. Sklar, B. (1997). Rayleigh fading channels in mobile digital communication systems, part I: Characterization. IEEE Communications Magazine, 35(7), 90–100.

    Article  Google Scholar 

  27. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid A. Al-Hussaibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Hussaibi, W.A. High capacity wireless multimedia transmission with unequal error protection over Rayleigh fading channel. Wireless Netw 20, 511–523 (2014). https://doi.org/10.1007/s11276-013-0619-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0619-4

Keywords

Navigation