Skip to main content
Log in

Contrasting genome patterns of two pseudomonas strains isolated from the date palm rhizosphere to assess survival in a hot arid environment

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The plant growth-promoting rhizobacteria (PGPRs) improve plant growth and fitness by multiple direct (nitrogen fixation and phosphate solubilization) and indirect (inducing systematic resistance against phytopathogens, soil nutrient stabilization, and maintenance) mechanisms. Nevertheless, the mechanisms by which PGPRs promote plant growth in hot and arid environments remain poorly recorded. In this study, a comparative genome analysis of two phosphate solubilizing bacteria, Pseudomonas atacamensis SM1 and Pseudomonas toyotomiensis SM2, isolated from the rhizosphere of date palm was performed. The abundance of genes conferring stress tolerance (chaperones, heat shock genes, and chemotaxis) and supporting plant growth (plant growth hormone, root colonization, nitrogen fixation, and phosphate solubilization) were compared among the two isolates. This study further evaluated their functions, metabolic pathways, and evolutionary relationship. Results show that both bacterial strains have gene clusters required for plant growth promotion (phosphate solubilization and root colonization), but it is more abundant in P. atacamensis SM1 than in P. toyotomiensis SM2. Genes involved in stress tolerance (mcp, rbs, wsp, and mot), heat shock, and chaperones (hslJ and hslR) were also more common in P. atacamensis SM1. These findings suggest that P. atacamensis SM1could have better adaptability to the hot and arid environment owing to a higher abundance of chaperone genes and heat shock proteins. It may promote plant growth owing to a higher load of root colonization and phosphate solubilization genes and warrants further in vitro study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali S, Hameed S, Shahid M, Iqbal M, Lazarovits G, Imran A (2020) Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol Res 232:126389

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Khan N (2021) Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res 249:126771

    Article  CAS  PubMed  Google Scholar 

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552

    Article  PubMed  Google Scholar 

  • Arora NK, Fatima T, Mishra J, Mishra I, Verma S, Verma R, Verma M, Bhattacharya A, Verma P, Mishra P (2020) Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils.J Adv Res

  • Ashajyothi M, Kumar A, Sheoran N, Ganesan P, Gogoi R, Subbaiyan GK, Bhattacharya R (2020) Black pepper (Piper nigrum L.) associated endophytic Pseudomonas putida BP25 alters root phenotype and induces defense in rice (Oryza sativa L.) against blast disease incited by Magnaporthe oryzae. Biol Control 143:104181

    Article  CAS  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473–1473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakshi A, Shemansky JM, Chang C, Binder BM (2015) History of research on the plant hormone ethylene. J Plant Growth Regul 34(4):809–827

    Article  CAS  Google Scholar 

  • Bargaz A, Elhaissoufi W, Khourchi S, Benmrid B, Borden KA, Rchiad Z (2021) Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiol Res 252:126842

    Article  CAS  PubMed  Google Scholar 

  • Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T (2020) Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 238:126486

    Article  CAS  PubMed  Google Scholar 

  • Carlson R, Tugizimana F, Steenkamp PA, Dubery IA, Hassen AI, Labuschagne N (2020) Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiol Res 232:126388

    Article  CAS  PubMed  Google Scholar 

  • Cha J-Y, Kang S-H, Ali I, Lee SC, Ji MG, Jeong SY, Shin G-I, Kim MG, Jeon J-R, Kim W-Y (2020) Humic acid enhances heat stress tolerance via transcriptional activation of Heat-Shock Proteins in Arabidopsis. Sci Rep 10(1):1–12

    Article  CAS  Google Scholar 

  • Chen J, Wang X, Tang D, Wang W (2019) Oxidative stress adaptation improves the heat tolerance of Pseudomonas fluorescens SN15-2. Biol Control 138:104070

    Article  CAS  Google Scholar 

  • Chevenet F, Brun C, Bañuls A-L, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7(1):1–9

    Article  CAS  Google Scholar 

  • Chilcott GS, Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64(4):694–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, Cho BH, Yang K-Y, Ryu C-M, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21(8):1067–1075

    Article  CAS  PubMed  Google Scholar 

  • de Moura GGD, de Barros AV, Machado F, Martins AD, da Silva CM, Durango LGC, Forim M, Alves E, Pasqual M, Doria J (2021) Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L. Microbiol Res 251:126793

    Article  CAS  PubMed  Google Scholar 

  • del Carmen Orozco-Mosqueda M, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res 235:126439

    Article  CAS  Google Scholar 

  • Delcher AL, Salzberg SL, Phillippy AM (2003) Using MUMmer to identify similar regions in large sequence sets.Curr Protoc Bioinforma(1):10–13

  • Elmahi Y, Alshamsi MS, Sudalaimuthuasari N, Kundu B, AlMaskari RS, Hazzouri KM, Chandran S, Malik SS, Mundra S, Amiri KMA (2021) Complete Genome Sequences of Pseudomonas atacamensis Strain SM1 and Pseudomonas toyotomiensis Strain SM2, Isolated from the Date Palm Rhizosphere. Microbiol Resour Announc 10(18):e00253–e00221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Noori F, Ebadi A, Reiahi Samani N (2020) Alleviation of stress-induced ethylene-mediated negative impact on crop plants by bacterial ACC deaminase: perspectives and applications in stressed agriculture management.Plant Microbiomes Sustain Agric:287–315

  • Fadiji AE, Ayangbenro AS, Babalola OO (2021) Unveiling the putative functional genes present in root-associated endophytic microbiome from maize plant using the shotgun approach. J Appl Genet 62(2):339–351

    Article  CAS  PubMed  Google Scholar 

  • Frerichs-Deeken U, Goldenstedt B, Gahl-Janßen R, Kappl R, Hüttermann J, Fetzner S (2003) Functional expression of the quinoline 2-oxidoreductase genes (qorMSL) in Pseudomonas putida KT2440 pUF1 and in P. putida 86 – 1 ∆qor pUF1 and analysis of the Qor proteins. Eur J Biochem 270(7):1567–1577

    Article  CAS  PubMed  Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205

    Article  CAS  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review.Cogent Food Agric2(1)

  • Goswami M, Deka S (2020) Isolation of a novel rhizobacteria having multiple plant growth promoting traits and antifungal activity against certain phytopathogens. Microbiol Res 240:126516

    Article  CAS  PubMed  Google Scholar 

  • Gowtham HG, Singh B, Murali M, Shilpa N, Prasad M, Aiyaz M, Amruthesh KN, Niranjana SR (2020) Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol Res 234:126422

    Article  CAS  Google Scholar 

  • Hanif MK, Malik KA, Hameed S, Saddique MJ, Fatima K, Naqqash T, Majeed A, Iqbal MJ, Imran A (2020) Growth stimulatory effect of AHL producing Serratia spp. from potato on homologous and non-homologous host plants. Microbiol Res 238:126506

    Article  CAS  PubMed  Google Scholar 

  • Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11(1):1–11

    Article  CAS  Google Scholar 

  • Jiao X, Takishita Y, Zhou G, Smith DL (2021) Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci 12:634796

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung BK, Khan AR, Hong S-J, Park G-S, Park Y-J, Kim H-J, Jeon H-J, Khan MA, Waqas M, Lee I-J (2017) Quorum sensing activity of the plant growth-promoting rhizobacterium Serratia glossinae GS2 isolated from the sesame (Sesamum indicum L.) rhizosphere. Ann Microbiol 67(9):623–632

    Article  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T (2007) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(suppl1):D480–D484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Sato Y (2020) KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci 29(1):28–35

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Ding W, Gong X, Liu Q, Du G, Chen J (2017) Recent advances in production of 5-aminolevulinic acid using biological strategies. World J Microbiol Biotechnol 33(11):1–7

    Article  CAS  Google Scholar 

  • Karray F, Gargouri M, Chebaane A, Mhiri N, Mliki A, Sayadi S (2020) Climatic aridity gradient modulates the diversity of the rhizosphere and endosphere bacterial microbiomes of Opuntia ficus-indica. Front Microbiol 11:1622

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulikova NA, Zhelezova AD, Voropanov MG, Filippova OI, Plyushchenko IV, Rodin IA (2020) Monoammonium phosphate effects on glyphosate in soils: mobilization, phytotoxicity, and alteration of the microbial community. Eurasian Soil Sci 53(6):787–797

    Article  CAS  Google Scholar 

  • Kumar S, Choudhary AK, Suyal DC, Makarana G, Goel R (2022) Leveraging arsenic resistant plant growth-promoting rhizobacteria for arsenic abatement in crops. J Hazard Mater 425:127965

    Article  CAS  PubMed  Google Scholar 

  • Lau ET, Tani A, Khew CY, Chua YQ, San Hwang S (2020) Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Microbiol Res 240:126549

    Article  CAS  PubMed  Google Scholar 

  • Li T, Guo Y-Y, Qiao G-Q, Chen G-Q (2016) Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate. ACS Synth Biol 5(11):1264–1274

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Wu L, Naeem MS, Liu H, Deng X, Xu L, Zhang F, Zhou W (2013) 5-Aminolevulinic acid enhances photosynthetic gas exchange, chlorophyll fluorescence and antioxidant system in oilseed rape under drought stress. Acta Physiol Plant 35(9):2747–2759

    Article  CAS  Google Scholar 

  • Mathur P, Roy S (2021) Insights into the plant responses to drought and decoding the potential of root associated microbiome for inducing drought tolerance. Physiol Plant 172(2):1016–1029

    Article  CAS  PubMed  Google Scholar 

  • McGrath JW, Chin JP, Quinn JP (2013) Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nat Rev Microbiol 11(6):412–419

    Article  CAS  PubMed  Google Scholar 

  • Miller NT, Fuller D, Couger MB, Bagazinski M, Boyne P, Devor RC, Hanafy RA, Budd C, French DP, Hoff WD (2016) Draft genome sequence of Pseudomonas moraviensis strain Devor implicates metabolic versatility and bioremediation potential. Genomics Data 9:154–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra P, Mishra J, Arora NK (2021) Plant growth promoting bacteria for combating salinity stress in plants–Recent developments and prospects: A review. Microbiol Res 252:126861

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Pramanik K, Ghosh SK, Pal P, Mondal T, Soren T, Maiti TK (2021) Unraveling the role of plant growth-promoting rhizobacteria in the alleviation of arsenic phytotoxicity: A review. Microbiol Res 250:126809

    Article  CAS  PubMed  Google Scholar 

  • Moon YS, Ali S (2022) Possible mechanisms for the equilibrium of ACC and role of ACC deaminase-producing bacteria.Appl Microbiol Biotechnol:1–11

  • Morales-Cedeno LR, del Carmen Orozco-Mosqueda M, Loeza-Lara PD, Parra-Cota FI, de Los Santos-Villalobos S, Santoyo G (2021) Plant growth-promoting bacterial endophytes as biocontrol agents of pre-and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiol Res 242:126612

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar T, Rehman SU, Smith D, Sultan T, Seleiman MF, Alsadon AA, Ali S, Chaudhary HJ, Solieman TH, Ibrahim AA (2020) Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling. Sustainability 12(6):2159

    Article  CAS  Google Scholar 

  • Naeem MS, Warusawitharana H, Liu H, Liu D, Ahmad R, Waraich EA, Xu L, Zhou W (2012) 5-Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. Plant Physiol Biochem 57:84–92

    Article  CAS  PubMed  Google Scholar 

  • Nanson JD, Forwood JK (2015) Structural characterisation of FabG from Yersinia pestis, a key component of bacterial fatty acid synthesis. PLoS ONE 10(11):e0141543–e0141543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naseem H, Ahsan M, Shahid MA, Khan N (2018) Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 58(12):1009–1022

    Article  CAS  PubMed  Google Scholar 

  • Nordstedt NP, Chapin LJ, Taylor CG, Jones ML (2020) Identification of Pseudomonas spp. that increase ornamental crop quality during abiotic stress. Front Plant Sci 10:1754

    Article  PubMed  PubMed Central  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Ahmed A-H (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    Article  CAS  PubMed  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33(11):1–16

    Article  CAS  Google Scholar 

  • Park Y-S, Dutta S, Ann M, Raaijmakers JM, Park K (2015) Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun 461(2):361–365

    Article  CAS  PubMed  Google Scholar 

  • Poblete-Morales M, Carvajal D, Almasia R, Michea S, Cantillana C, Levican A, Silva-Moreno E (2020) Pseudomonas atacamensis sp. nov., isolated from the rhizosphere of desert bloom plant in the region of Atacama, Chile. Antonie Van Leeuwenhoek 113:1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Poór P, Nawaz K, Gupta R, Ashfaque F, Khan MIR (2021) Ethylene involvement in the regulation of heat stress tolerance in plants.Plant Cell Rep:1–24

  • Rai PK, Singh M, Anand K, Saurabh S, Kaur T, Kour D, Yadav AN, Kumar M (2020) Role and potential applications of plant growth-promoting rhizobacteria for sustainable agriculture. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, pp 49–60

  • Riyazuddin R, Verma R, Singh K, Nisha N, Keisham M, Bhati KK, Kim ST, Gupta R (2020) Ethylene: a master regulator of salinity stress tolerance in plants. Biomolecules 10(6):959

    Article  CAS  PubMed Central  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17(2):316–331

    Article  PubMed  Google Scholar 

  • Roncarati D, Scarlato V (2017) Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev 41(4):549–574

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Watanabe M, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58(1):23–29

    Article  CAS  PubMed  Google Scholar 

  • Seppey M, Manni M, Zdobnov EM (2019) BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol Clifton NJ 1962:227–245

    Article  CAS  Google Scholar 

  • Singh SB, Gowtham HG, Murali M, Hariprasad P, Lakshmeesha TR, Murthy KN, Amruthesh KN, Niranjana SR (2019) Plant growth promoting ability of ACC deaminase producing rhizobacteria native to Sunflower (Helianthus annuus L.). Biocatal Agric Biotechnol 18:101089

    Article  Google Scholar 

  • Sitaraman R (2015) Pseudomonas spp. as models for plant-microbe interactions. Front Plant Sci 6:787–787

    Article  PubMed  PubMed Central  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115(3):433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  • Stasi R, Neves HI, Spira B (2019) Phosphate uptake by the phosphonate transport system PhnCDE. BMC Microbiol 19(1):1–8

    Article  Google Scholar 

  • Stock JB, Baker MD (2009) Chemotaxis. Encyclopedia of Microbiology. Elsevier Inc., pp 71–78

  • Syed S, Tollamadugu NP, Lian B (2020) Aspergillus and Fusarium control in the early stages of Arachis hypogaea (groundnut crop) by plant growth-promoting rhizobacteria (PGPR) consortium. Microbiol Res 240:126562

    Article  CAS  PubMed  Google Scholar 

  • Tamang M (2021) Unravelling the Role of PGPR” Pseudomonas fluorescens” in Semi-Arid Soils of the Rio Grande Valley. PhD Thesis, The University of Texas Rio Grande Valley

  • Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44(14):6614–6624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari G, Duraivadivel P, Sharma S (2018) 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Sci Rep 8(1):1–12

    Article  Google Scholar 

  • Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42(D1):D581–D591

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Wen J, Chang M, Yang G, Zhou S (2014) Pseudomonas sihuiensis sp. nov., isolated from a forest soil in South China. Antonie Van Leeuwenhoek 105(4):781–790

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Wang Z, Zhu Q, Xie Z, Mei Y, Liang Y, Chen Z (2021) Stress preadaptation and overexpression of rpoS and hfq genes increase stress resistance of Pseudomonas fluorescens ATCC13525. Microbiol Res 250:126804

    Article  CAS  PubMed  Google Scholar 

  • You M, Fang S, MacDonald J, Xu J, Yuan Z-C (2020) Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth. Microbiol Res 233:126395

    Article  CAS  PubMed  Google Scholar 

  • Zahir ZA, Nadeem SM, Khan MY, Binyamin R, Waqas MR (2019) Role of halotolerant microbes in plant growth promotion under salt stress conditions. Saline soil-based agriculture by halotolerant microorganisms. Springer, pp 209–253

  • Zeng B, Wang C, Zhang P, Guo Z, Chen L, Duan K (2020) Heat shock protein DnaJ in Pseudomonas aeruginosa affects biofilm formation via pyocyanin production. Microorganisms 8(3):395

    Article  CAS  PubMed Central  Google Scholar 

  • Zuniga A, Donoso RA, Ruiz D, Ruz GA, González B (2017) Quorum-sensing systems in the plant growth-promoting bacterium Paraburkholderia phytofirmans PsJN exhibit cross-regulation and are involved in biofilm formation. Mol Plant Microbe Interact 30(7):557–565

    Article  CAS  PubMed  Google Scholar 

  • Statements & Declarations

Download references

Acknowledgements

We thank UAE University research office for providing financial support through Start-up research grant (G00003320; 31S409).

Funding

This work was supported by a UAE University start-up research grant (G00003320).

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by SSM and SM. BK and RSA performed molecular lab work. NS generated the raw data and assembled the genome. SSM conducted bioinformatic and statistical analyses. SSM drafted the manuscript. SM edited the manuscript and secured funding.

Corresponding author

Correspondence to Sunil Mundra.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, S.S., Sudalaimuthuasari, N., Kundu, B. et al. Contrasting genome patterns of two pseudomonas strains isolated from the date palm rhizosphere to assess survival in a hot arid environment. World J Microbiol Biotechnol 38, 207 (2022). https://doi.org/10.1007/s11274-022-03392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-022-03392-4

Keywords

Navigation