Skip to main content
Log in

An insight on microbial degradation of benzo[a]pyrene: current status and advances in research

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Benzo[a]pyrene (BaP) is a high molecular weight polycyclic aromatic hydrocarbon produced as a result of incomplete combustion of organic substances. Over the years, the release of BaP in the atmosphere has increased rapidly, risking human lives. BaP can form bonds with DNA leading to the formation of DNA adducts thereby causing cancer. Therefore addressing the problem of its removal from the environment is quite pertinent though it calls for a very cumbersome and tedious process owing to its recalcitrant nature. To resolve such issues many efforts have been made to develop physical and chemical technologies of BaP degradation which have neither been cost-effective nor eco-friendly. Microbial degradation of BaP, on the other hand, has gained much attention due to added advantage of the high level of microbial diversity enabling great potential to degrade the substance without impairing environmental sustainability. Microorganisms produce enzymes like oxygenases, hydrolases and cytochrome P450 that enable BaP degradation. However, microbial degradation of BaP is restricted due to several factors related to its bio-availability and soil properties. Technologies like bio-augmentation and bio-stimulation have served to enhance the degradation rate of BaP. Besides, advanced technologies such as omics and nano-technology have opened new doors for a better future of microbial degradation of BaP and related compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Shafy HI, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25(1):107–123

    Google Scholar 

  • Ahmad F, Zhu D, Sun J (2020) Bacterial chemotaxis: a way forward to aromatic compounds biodegradation. Environ Sci Eur 32:52

    Google Scholar 

  • Al-Hawash AB, Dragh MA, Li S, Alhujaily A, Abbood HA, Zhang X, Ma F (2018) Principles of microbial degradation of petroleum hydrocarbons in the environment. Egypt J Acquatic Res 44(2):71–76

    Google Scholar 

  • Alomirah H, Al-Zenki S, Al-Hooti S, Zaghloul S, SawayaW AN, Kannan K (2011) Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control 22:2028–2035

    CAS  Google Scholar 

  • Amrani AEL, Dumas AS, Wick LY, Yergeau E (2015) “Omics” insights into PAH degradation toward improved green remediation biotechnologies. Environ Sci Technol 49:11281–21129

    PubMed  Google Scholar 

  • Andriani A, Tachibana S, Itoh K (2016) Effects of saline-alkaline stress on benzo[a]pyrene biotransformation and ligninolytic enzyme expression by Bjerkandera adusta SM46. World J Microbiol Biotechnol 32(3):39

    PubMed  Google Scholar 

  • Ansari SA, Husain Q (2012) Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A-Celite 545 immobilized Aspergillus oryzae β galactosidase. Food Bioprod Process 90(2):351–359

    CAS  Google Scholar 

  • Armstrong BG, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect 112(9):970–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atagana HI, Haynes RJ, Wallis FM (2003) Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation 14:297–307

    CAS  PubMed  Google Scholar 

  • ATSDR (2011) http://www.atsdr.cdc.gov/SPL/index.html. The priority list of hazardous substances that will be the subject of toxicological profiles. http://www.atsdr.cdc.gov/SPL/index.html. Accessed 15 Oct 2019

  • Aziz A, Agamuthu P, Alaribe FO, Fauziah SH (2018) Biodegradation of benzo[a]Pyrene by bacterial consortium isolated from mangrove sediment. Environ Technol 39(4):527–535

    CAS  PubMed  Google Scholar 

  • Ba Q, Li J, Huang C, Qiu H, Li J, Chu R, Zhang W, Xie D, Wu Y, Wang H (2015) Effects of Benzo[a]pyrene exposure on human hepatocellular carcinoma cell angiogenesis, metastasis, and NF-kB signaling. Environ Health Perspect 123:246–254. https://doi.org/10.1289/ehp.1408524

    Article  PubMed  Google Scholar 

  • Bhatt K, Lily MK, Joshi G, Dangwal K (2018) Benzo(a)pyrene degradation pathway in Bacillus subtilis BMT4i (MTCC 9447). Turk J Biochem 43(6):693–701

    CAS  Google Scholar 

  • Bhattacharya SS, Syed K, Shann J, Yadav JS (2014) A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white-rot fungus Phanerochaete chrysosporium. J Hazardous Mater 261:675–683

    Google Scholar 

  • Bhattacharya S, Das A, Muthusamy P, Jayaraman A (2017) Degradation of benzo[a]pyrene by Pleurotus ostreatus PO-3 in the presence of defined fungal and bacterial co-cultures. J Basic Microbiol 57:95–103. https://doi.org/10.1002/jobm.201600479

    Article  CAS  PubMed  Google Scholar 

  • Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D (2019) Overview of biological mechanisms of human carcinogens. J Toxicol Environ Health Part B 22:288–359

    CAS  Google Scholar 

  • Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46(1):7–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial co-cultures. Appl Environ Microbiol 66:1007–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Briede JJ, Godschalk RW, Emans MT (2004) In vitro and in vivo studies on oxygen free radical and DNA adduct formation in rat lung and liver during benzo[a] pyrene metabolism. Free Radic Res 38(9):995–1002

    CAS  PubMed  Google Scholar 

  • Bukowska B, Sicińska P (2021) Influence of benzo (a) pyrene on different epigenetic processes. Int J Mol Sci 22(24):13453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burchiel SW, Luster MI (2001) Signaling by environmental polycyclic aromatic hydrocarbons in human lymphocytes. Clin Immunol 98(1):2–10

    CAS  PubMed  Google Scholar 

  • Cai Y, Pan L, Miao J (2016) Molecular evidence for the existence of an aryl hydrocarbon receptor pathway in scallops Chlamys farreri. Comp Biochem Physiol B 196:74–84

    PubMed  Google Scholar 

  • Cao H, Cuiping W, Liu H, Jia W, Sun H (2020) Enzyme activities during benzo[a] pyrene degradation by the fungus Lasiodiplodia theobromae isolated from polluted soil. Sci Rep 10(1):865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang MM, Lin CN, Fang CC, Chen M, Liang PI, Li WM, Yeh BW, Cheng HC, Huang BM, Wu WJ, Chen YA (2018) Glycine N-methyltransferase inhibits aristolochic acid nephropathy by increasing CYP3A44 and decreasing NQO1 expression in female mouse hepatocytes. Sci Rep 8:6960

    PubMed  PubMed Central  Google Scholar 

  • Chen B, Qian L (2012) Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J Soil Sediment 12:1350–1359

    CAS  Google Scholar 

  • Chen S, Yin H, Ye J, Peng H, Liu Z, Dang Z, Chang J (2014) Influence of co-existed Benzo[a]pyrene and copper on the cellular characteristics of Stenotrophomonas maltophilia during biodegradation and transformation. Bioresour Technol 158:181–187

    CAS  PubMed  Google Scholar 

  • Chen M, Yang MH, Chang MM, Tyan YC, Chen YMA (2019) Tumor suppressor gene glycine N-methyltransferase and its potential in liver disorders and hepatocellular carcinoma. Toxicol Appl Pharmacol 378:114607

    CAS  PubMed  Google Scholar 

  • Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C et al (2016) Hydroxyl radicals based advanced oxidation processes (aops) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284:582–598

    CAS  Google Scholar 

  • Chulalksananukul S, Gadd GM, Sangvanich P, Sihanonth P, Piapukiew J, Vangnai AS (2006) Biodegradation of benzo(a)pyrene by a newly isolated Fusarium sp. FEMS Microbiol Lett 262(1):99–106

    Google Scholar 

  • Cravo-Laureau C, Hernandez-Raquet G, Vitte I, Jézéquel R, Bellet V, Godon JJ, Caumette P, Balaguer P, Duran R (2011) Role of environmental fluctuations and microbial diversity in degradation of hydrocarbons in contaminated sludge. Res Microbiol 162(9):888–895

    CAS  PubMed  Google Scholar 

  • Delsarte I, Rafin C, Mrad F, Veiginie E (2018) Lipid metabolism and benzo[a]pyrene degradation by Fusarium solani: an unexplored potential. Environ Sci Pollut Res Int 25(12):12177–12182

    CAS  PubMed  Google Scholar 

  • Denison MS, Soshilov AA, He G, Degroot DE, Zhao B (2011) Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 124:1–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan L, Naidu R, Liu Y, Palanisami T, Dong Z, Mallavarapu M, Semple KT (2015) Effect of ageing on benzo[a]pyrene extractability in contrasting soils. J Hazard Mater 296:175–184

    CAS  PubMed  Google Scholar 

  • Elyamine AM, Kan J, Meng S, Tao P, Wang H, Hu Z (2021) Aerobic and anaerobic bacterial and fungal degradation of pyrene: mechanism pathway including biochemical reaction and catabolic genes. Int J Mol Sci 22(15):8202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang X, Dong W, Thornton C, Willett KL (2010) Benzo [a] pyrene effects on glycine N-methyltransferase mRNA expression and enzyme activity in Fundulus heteroclitus embryos. Aquat Toxicol 98(2):130–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Ye G, Yi L, Chi Y (2020) Benzo[a]pyrene at human blood equivalent level induces human lung epithelial cell invasion via aryl hydrocarbon receptor signalling. J Appl Toxicol 40:1087–1098

    CAS  PubMed  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    PubMed  PubMed Central  Google Scholar 

  • Gitipour S, Sorial GA, Ghasemi S, Bazyari M (2018) Treatment technologies for PAH-contaminated sites: a critical review. Environ Monit Assess 190:546

    PubMed  Google Scholar 

  • Guevara-Luna J, Alvarez-Fitz P, Rios-Leal E, Acevedo-Quiroz M, Encarnacion-Guevara S, Moreno- Godinez ME, Castellanos-Escamilla M, Toribio-Jiménez J, Romero-Ramírez Y (2018) Biotransformation of benzo[a]pyrene by the thermophilic bacterium Bacillus licheniformis M2–7. World J Microbiol Biotechnol 34:88

    PubMed  Google Scholar 

  • Guo J, Xu Y, Ji W, Song L, Dai C, Zhan L (2015) Effects of exposure to benzo[a]pyrene on metastasis of breast cancer are mediated through ROS-ERKMMP9 axis signaling. Toxicol Lett 234:201–210. https://doi.org/10.1016/j.toxlet.2015.02.016

    Article  CAS  PubMed  Google Scholar 

  • Hadibarata T (2009) Oxidative degradation of benzo[a]pyrene by the ligninolytic fungi. In: Proceedings of interdisciplinary symposium on environmental science-environmental research in Asia, 2 edn, Terrapub, pp. 309–316

  • Hadibarata T, Kristani RA (2012) Fate and co-metabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022. Bioresour Technol 107:314–318

    CAS  PubMed  Google Scholar 

  • Hu X, Zhao X, Hwang H (2007) Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite. Chemosphere 66(9):1618–1626

    CAS  PubMed  Google Scholar 

  • Huang J, Yang X, Wu Q, Mai S, Chi H (2019) Application of independent immobilization in benzo[a]pyrene biodegradation by synthetic microbial consortium. Environ Sci Pollut Res 26:21052–21058

    CAS  Google Scholar 

  • Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci USA 101:8998–9002

    CAS  PubMed  PubMed Central  Google Scholar 

  • IARC (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92:1–853

    Google Scholar 

  • Innemanova P, Filipova A, Michalikova K, Wimmerova L, Cajthaml T (2018) Bio-augmentation of PAH- degrading contaminated soils: a novel procedure for introduction of bacterial degraders into contaminated soil. Ecol Eng 118:93–96

    Google Scholar 

  • Jee SC, Kim M, Kim KS, Kim HS, Sung JS (2020) Protective effects of myricetin on benzo [a] pyrene-induced 8-hydroxy-2′-deoxyguanosine and BPDE-DNA adduct. Antioxidants 9(5):446

    CAS  PubMed Central  Google Scholar 

  • Jin X, Tian W, Liu Q, Qiab K, Zhao J, Gong X (2017) Biodegradation of Benzo[a]pyrene-contaminated sediment of the Jiaozhou bay wetland using Pseudomonas sp. immobilization. Mar Pollut Bull 117:283–290

    CAS  PubMed  Google Scholar 

  • Kong L, Gao Y, Zhou Q, Zhao X, Sun Z (2018) Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. J Hazard Mater 342:276–284

    Google Scholar 

  • Koshlaf E, Shahsavari E, Aburto-Medina A, Taha M, Haleyur N, Makadia TH, Morrison PD, Ball AS (2016) Bioremediation potential of diesel-contaminated Libyan soil. Ecotoxicol Environ Saf 133:297–305

    CAS  PubMed  Google Scholar 

  • Kotoky R, Pandey P (2020) Rhizosphere assisted biodegradation of benzo(a)pyrene by cadmium resistant plant-probiotic Serratia marcescens S2I7, and its genomic traits. Sci Rep 10:5279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulshreshtha S (2013) Genetically engineered microorganisms: a problem solving approach for bioremediation. J Bioremediat Biodegrad 4(4):100–133

    Google Scholar 

  • Kuppusamy S, Palanisami T, Megharaj M, Naidu R (2016) In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Rev Environ Contam Toxicol 236:1–115

    CAS  PubMed  Google Scholar 

  • Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints. Emerg Trends Future 168:944–968

    CAS  Google Scholar 

  • Lee B-K, VVu Tuan (2010) Sources, distribution and toxicity of polyaromatic hydrocarbons (PAHs) in particulate matter. Air Pollut. https://doi.org/10.5772/10045

    Article  Google Scholar 

  • Lee J, Kim S, Moon J, Kim S, Kang D, Yoon H (2016) Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chem 199:632–638. https://doi.org/10.1016/j.foodchem.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  • Li ZY, Wu YH, Huo YY, Cheng H, Wang CS, Xu XW (2016) Complete genome sequence of a benzo[a]pyrene-degrading bacterium altererythrobacter epoxidivorans CGMCC 1.7731. Mar Genom 25:39–41

    Google Scholar 

  • Li W, Hu J, Adar OSA, Yang Y, Chiou YY, Sancar A (2017) Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo[a]pyrene. PNAS 114(26):6752–6757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lily MK, Bahuguna A, Dangwal K, Garg V (2009) Degradation of benzo[a]pyrene by a novel strain Bacillus subtilis BMT4i(MTCC 9447). Braz J Microbiol 40(4):884–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lima ALC, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ Forensics 6:109–131

    CAS  Google Scholar 

  • Lin S, Ren A, Wang L, Huang Y, Wang Y, Wang C, Greene ND (2018) Oxidative stress and apoptosis in benzo [a] pyrene-induced neural tube defects. Free Radic Biol Med 116:149–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yin H, Tang SY, Wei K, Peng H, Lu GN, Dang Z (2019) Effects of benzo [a]pyrene (BaP) on the composting and microbial community of sewage sludge. Chemosphere 222:517–526

    CAS  PubMed  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4:118–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loss EM, Lee MK, Wu MY, Martien J, Chen W, Amador-Noguez D, Jefcoate C, Remucal C, Jung S, Kim SC, Yu JH (2019) Cytochrome P450 monooxygenase-mediated metabolic utilization of benzo[a]Pyrene by Aspergillus species. Mol Bio Physio 10:558–619

    Google Scholar 

  • Lu Q, Chen K, Long Y, Liang X, He B, Yu L, Ye J (2019) Benzo(a)pyrene degradation by cytochrome P450 hydroxylase and the functional metabolism network of Bacillus thuringiensis. J Hazard Mater 366:329–337

    CAS  PubMed  Google Scholar 

  • Lv M, Luan X, Liao C, Wang D, Liu D, Zhang G, Chen L (2020) Human impacts on polycyclic aromatic hydrocarbon distribution in Chinese intertidal zones. Nat Sustain 3(10):878–884

    Google Scholar 

  • Lyu Y, Zheng W, Zheng T, Tian Y (2014) Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS ONE 9(7):101438

    Google Scholar 

  • Markel U, Essani KD, Besirlioglu V, Schiffels J, Streit WR, Schwaneberg U (2020) Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem Soc Rev 49:233–262

    CAS  PubMed  Google Scholar 

  • Martorell I, Nieto A, Nadal M, Perelló G, Marcé RM, Domingo JL (2012) Human exposure to polycyclic aromatic hydrocarbons (PAHs) using data from a duplicate diet study in Catalonia, Spain. Food Chem Toxicol 50:4103–4108. https://doi.org/10.1016/j.fct.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  • Mason OU, Han J, Woyke T, Jansson JK (2014) Single-cell genomics reveals features of a Colwellia species that was dominant during the deepwater horizon oil spill. Front Microbiol 5:332

    PubMed  PubMed Central  Google Scholar 

  • Mehndiratta P, Jain A, Srivastava S, Gupta N (2013) Environmental pollution and nanotechnology. Environ Pollut 2(2):49

    CAS  Google Scholar 

  • Mishra S, Singh SN (2013) Biodegradation of benzo(a)pyrene mediated by catabolic enzymes of bacteria. Int J Environ Sci Technol 11:1571–1580

    Google Scholar 

  • Mohandass R, Rout P, Jiwal S, Sasikala C (2012) Biodegradation of benzo[a]pyrene by the mixed culture of Bacillus cereus and Bacillus vireti isolated from the petrochemical industry. Environ Biol 33(6):985–989

    CAS  Google Scholar 

  • Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70:340–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nzila A, Musa MM (2021) Current status of and future perspectives in bacterial degradation of benzo[a]pyrene. Int J Environ Res Public Health 18:262

    CAS  Google Scholar 

  • Nzila A, Musa MM, Sankara S, Al-Momani M, Xiang L, Li QX (2021) Degradation of benzo [a] pyrene by halophilic bacterial strain Staphylococcus haemoliticus strain 10SBZ1A. PLoS ONE 16(2):0247723

    Google Scholar 

  • Peng H, Yin H, Deng J, Ye JS, Chen SN, He BY, Zhang NA (2012) Biodegradation of benzo[a]pyrene by Arthrobacter oxydans (B4). Pedosphere 22:554–561

    CAS  Google Scholar 

  • Ping L, Guo Q, Chen X, Yuan X, Zhang C, Zhao H (2017) Biodegradation of pyrene and benzo[a]pyrene in the liquid matrix and soil by a newly indentified Raoultella planticola strain. 3 Biotech 7(1):56

    PubMed  PubMed Central  Google Scholar 

  • Qiao K, Tian W, Bai J, Wang L, Zhao J, Song T, Chu M (2020) Removal of high-molecular-weight polycyclic aromatic hydrocarbons by a microbial consortium immobilized in magnetic-floating biochar gel beads. Mar Pollut Bull 159:111489. https://doi.org/10.1016/j.marpolbul.2020.111489

    Article  CAS  PubMed  Google Scholar 

  • Qin W, Zhu Y, Fan F, Wang Y, Lin X, Ding A, Dou J (2017) Biodegradation of benzo(a)pyrene by Microbacterium sp. strain under denitrification. Degradation pathway and effects of limiting electron acceptors or carbon source. Biochem Eng J 121:131–138

    CAS  Google Scholar 

  • Rentz JA, Alvarez PJJ, Schnoor JL (2008) Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02. Environ Pollut 151(3):669–677

    CAS  PubMed  Google Scholar 

  • Rojas-Aparicio A, Hernández-Eligio JA, Toribio-Jiménez J, Rodríguez-Barrera MA, Castellanos-Escamilla M, Romero-Ramírez Y (2018) Genetic expression of poba and fabhb in Bacillus licheniformis M2–7 in the presence of benzo[a]pyrene. Genet Mol Res. https://doi.org/10.4238/gmr16039916

    Article  Google Scholar 

  • See SW, Karthikeyan S, Balasubramanian R (2006) Health risk assessment of occupational exposure to particulate-phase polycyclic aromatic hydrocarbons associated with Chinese, Malay and Indian cooking. Environ Monit 8:369–376

    CAS  Google Scholar 

  • Shahsavari E, Adetutu EM, Anderson PA, Ball AS (2013) Necrophytoremediation of phenanthrene and pyrene in contaminated soil. J Environ Manage 122:105–112

    CAS  PubMed  Google Scholar 

  • Shiizaki K, Kawanishi M, Yagi T (2017) Modulation of benzo[a]pyrene–DNA adduct formation by CYP1 inducer and inhibitor. Genes Environ 39:14

    PubMed  PubMed Central  Google Scholar 

  • Shimada T, Guengerich FP (2006) Inhibition of human cytochrome P450 1A1-, 1A2-, and 1B1-mediated activation of procarcinogens to genotoxic metabolites by polycyclic aromatic hydrocarbons. Chem Res Toxicol 19(2):288–294

    CAS  PubMed  Google Scholar 

  • Singh L, Varshney J, Agarwal T (2016) Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chem 199:768–781. https://doi.org/10.1016/j.foodchem.2015.12.074

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Shukla P (2019) Current trends in protein engineering: updates and progress. Curr Protein Pept Sci 20:398–407

    CAS  PubMed  Google Scholar 

  • Sinha R, Kulldor M, Gunter MJ, Strickland P, Rothman N (2015) Dietary benzo[a]pyrene intake and risk of colorectal adenoma. Cancer Epidemiol Biomark 14:2030–2034

    Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2003) Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase. Appl Environ Microbiol 69(7):3957–3964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su D, Li PJ, Frank S, Xiong XZ (2006) Biodegradation of benzo [a] pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite. J Environ Sci 18(6):1204–1209

    CAS  Google Scholar 

  • Su D, Li P, Wang X, Stagnitti F, Xiong X (2008) Biodegradation of benzo[a]pyrene in soil by immobilised fungus. Environ Eng Sci 25(8):1181–1188

    CAS  Google Scholar 

  • Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS (2010) Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons(PAHs). Biochem Biophy Res Commun 399:492–497

    CAS  Google Scholar 

  • Ueng T, Chang Y, Tsai Y, Su J, Chan P, Shih J, Lee YC, Ma YC, Kuo ML (2010) Potential roles of fibroblast growth factor-9 in the benzo(a)pyrene-induced invasion in vitro and the metastasis of human lung adenocarcinoma. Arch Toxicol 84:651–660. https://doi.org/10.1007/s00204-010-0547-3

    Article  CAS  PubMed  Google Scholar 

  • Veyrand B, Sirot V, Durand S, Pollono C, Marchand P, Dervilly-pinel G, Tard A, Leblanc JC, Bizec BL (2013) Human dietary exposure to polycyclic aromatic hydrocarbons: results of the second French total diet study. Environ Int 54:11–17. https://doi.org/10.1016/j.envint.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Gong Z, Li P, Zhang L, Hu X (2008) Degradation of pyrene and benzo[a]pyrene in contaminated soil by immobilized fungi. Environ Eng Sci 25(5):677–684

    Google Scholar 

  • White AJ, Bradshaw PT, Herring AH, Teitelbaum SL, Beyea J, Stellman SD, Steck SE, Mordukhovich I, Eng SM, Engel LS, Conway K, Hatch M, Neugut AI, Santella RM, Gammon MD (2016) Exposure to multiple sources of polycyclic aromatic hydrocarbons and breast cancer incidence. Environ Int 8:185–192. https://doi.org/10.1016/j.envint.2016.02.009

    Article  CAS  Google Scholar 

  • Wu M, Dick WA, Li W, Wang X (2016) Bio-augmentation and bio-stimulation of hydrocarbon degradation and microbial community in petroleum contaminated soil. Int Biodeterior Biodegrad 107:158–164

    CAS  Google Scholar 

  • Wu J, Zhang J, Nie JH, Duan JC, Shi YF, Feng L, Yang X, An Y, Sun ZW (2019) The chronic effect of amorphous silica nanoparticles and benzo [a] pyrene co-exposure at low dose in human bronchial epithelial BEAS-2B cells. Toxicol Res 8:731–740

    CAS  Google Scholar 

  • Xiong Y, Li J, Huang G, Yan L, Ma J (2021) Interacting mechanism of benzo (a) pyrene with free DNA in vitro. Int J Biol Macromol 167:854–861

    CAS  PubMed  Google Scholar 

  • Zhao Z, Wong JWC (2009) Rapid biodegradation of benzo[a]pyrene by Bacillus subtilis BUM under thermophilic conditions. Environ Eng Sci 27(11):939–945

    Google Scholar 

  • Zhao G, Sheng Y, Wang C, Yang J, Wang Q, Chen L (2018) In situ microbial remediation of crude oil-soaked marine sediments using zeolite carrier with a polymer coating. Mar Pollut Bullet 129(1):172–178

    CAS  Google Scholar 

  • Zhou QX, Hua T (2004) Bioremediation: a review of applications and problems to be resolved. Prog Nat Sci 14(11):937–944

    CAS  Google Scholar 

  • Zhu Y, Chen K, Ding Y, Situ D, Li Y, Long Y, Wang L (2019) Metabolic and proteomic mechanism of benzo[a]pyrene degradation by Brevibacillus brevis. Ecotoxicol Environ Safe 172:1–10

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge all those who contributed to this work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript has been read and approved for submission by all the authors. AP has written the manuscript. SS has provided ideas and inputs for the framing of the manuscript. JPNR has edited and refined the manuscript.

Corresponding author

Correspondence to Arjita Punetha.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punetha, A., Saraswat, S. & Rai, J.P.N. An insight on microbial degradation of benzo[a]pyrene: current status and advances in research. World J Microbiol Biotechnol 38, 61 (2022). https://doi.org/10.1007/s11274-022-03250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-022-03250-3

Keywords

Navigation