Skip to main content
Log in

Biodegradation and metabolic pathway of nicotine in Rhodococcus sp. Y22

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nicotine in tobacco is harmful to health and the environment, so there is an environmental requirement to remove nicotine from tobacco and tobacco wastes. In this study, the biotransformation of nicotine by Rhodococcus sp. Y22 was investigated, and three metabolites (NIC1, NIC4 and NIC5) were isolated by column separation, preparative TLC and solid plate’s method, respectively. NIC1 was identified as 6-hydoxynicotine based on the results of NMR, MS, HPLC–UV and HRESIMS analysis; NIC4 was a novel compound and identified as 5-(3-methyl-[1,3]oxazinan-2-ylidene)-5H-pyridin-2-one based on the results of NMR, MS and UV analysis; NIC5 was identified as nicotine blue based on the results of NMR and MS analysis. Meanwhile, two metabolites NIC2 and NIC3 were identified as 6-hydroxy-N-methylmyosmine and 6-hydroxypseudooxynicotine by HRESIMS analysis, respectively. According to these metabolites, the possible pathway of nicotine degradation by Rhodococcus sp. Y22 was proposed. The nicotine can be transformed to nicotine blue through two pathways (A and B), and 6-hydroxy-N-methylmyosmine is the key compound, which can be converted to 6-hydroxypseudooxynicotine (pathway A) and 5-(3-methyl-[1,3]oxazinan-2-ylidene)-5H-pyridin-2-one (pathway B), respectively. Moreover, the encoding gene of nicotine dehydrogenase, ndh, was amplified from Rhodococcus sp. Y22, and its transcriptional level could be up-regulated obviously under nicotine induction. Our studies reported the key metabolites and possible biotransformation pathway of nicotine in Rhodococcus sp. Y22, and provided new insights into the microbial metabolism of nicotine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brandsch R (2006) Microbiology and biochemistry of nicotine degradation. Appl Microbiol Biotechnol 69:493–498

    Article  CAS  Google Scholar 

  • Chiribau CB, Mihasan M, Ganas P, Igloi GL, Artenie V, Brandsch R (2006) Final steps in the catabolism of nicotine. FEBS J 273:1528–1536

    Article  CAS  Google Scholar 

  • Cobzaru C, Ganas P, Mihasan M, Schleberger P, Brandsch R (2011) Homologous gene clusters of nicotine catabolism, including a new ω-amidase for α-ketoglutaramate, in species of three genera of Gram-positive bacteria. Res Microbiol 162:285–291

    Article  CAS  Google Scholar 

  • Ganas P, Sachelaru P, Mihasan M, Igloi GL, Brandsch R (2008) Two closely related pathways of nicotine catabolism in Arthrobacter nicotinovorans and Nocardioides sp. strain JS614. Arch Microbiol 189:511–517

    Article  CAS  Google Scholar 

  • Gloger M, Decker K (1969) Bildung kristallinen Nicotinblaus beim Abbau von Nicotin durch Arthrobacter oxydans. Arch Mikrobiol 65:98–104

    Article  CAS  Google Scholar 

  • Gong XW, Yang JK, Duan YQ, Dong Y, Zhe W, Wang L, Li QH, Zhang KQ (2009) Isolation and characterization of Rhodococcus sp. Y22 and its potential application to tobacco processing. Res Microbiol 160:200–204

    Article  CAS  Google Scholar 

  • Gravely LE, Geiss VL, Gregory CF (1985) Process for reduction of nitrate and nicotine content of tobacco by microbial treatment. US Patent 4557280

  • Grether-Beck S, Igloi GL, Pust S, Schilz E, Decker K, Brandsch R (1994) Structural analysis and molybdenum-dependent expression of the pAO1-encoded nicotine dehydrogenase genes of Arthrobacter nicotinovorans. Mol Microbiol 13:929–936

    Article  CAS  Google Scholar 

  • Gurusamy R, Natarajan S (2013) Current status on biochemistry and molecular biology of microbial degradation of nicotine. Sci World J 2013. doi:10.1155/2013/125385

  • Hecht SS, Hochalter JB, Villalta PW, Murphy SE (2000) 2′-Hydroxylation of nicotine by cytochrome P450 2A6 and human liver microsomes: formation of a lung carcinogen precursor. Proc Natl Acad Sci USA 97:12493–12497

    Article  CAS  Google Scholar 

  • Hochstein LI, Rittenberg CS (1959) The bacterial oxidation of nicotine. III. The isolation and identification of 6-hydroxypseudooxynicotine. J Biol Chem 235:795–799

    Google Scholar 

  • Igoli GL, Brandsch R (2003) Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system. J Bacteriol 185:1976–1986

    Article  Google Scholar 

  • Knackmuss HJ, Beckmann W (1973) The structure of nicotine blue from Arthrobacter oxidans. Arch Mikrobiol 90:167–169

    Article  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CC (2005) Biodegradation and Rhodococcus-masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

    Article  CAS  Google Scholar 

  • Li HL, Xie KB, Huang HY, Wang SN (2014) 6-hydroxy-3-succinoylpyridine hydroxylase catalyzes a central step of nicotine degradation in Agrobacterium tumefaciens S33. PLoS One 9:e103324

    Article  Google Scholar 

  • Liu JL, Ma GH, Chen T, Hou Y, Yang SH, Zhang KQ, Yang JK (2015) Nicotine-degrading microorganisms and their potential applications. Appl Microbiol Biotechnol 99:3775–3785

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Malphettes L, Weber CC, El-Baba MD, Schoenmakers RG, Aubel D, Weber W, Fussenegger M (2005) A novel mammalian expression system derived from components coordinating nicotine degradation in Arthrobacter nicotinovorans pAO1. Nucleic Acids Res 33:e107

    Article  Google Scholar 

  • Meng XJ, Lu LL, Gu GF, Xiao M (2010) A novel pathway for nicotine degradation by Aspergillus oryzae 112822 isolated from tobacco leaves. Res Microbiol 161:626–633

    Article  CAS  Google Scholar 

  • Mihasan M, Brandsch R (2013) pAO1 of Arthrobacter nicotinovorans and the spread of catabolic traits by horizontal gene transfer in gram-positive soil bacteria. J Mol Evol 77:22–30

    Article  CAS  Google Scholar 

  • Raman G, Mohan K, Manohar V, Sakthivel N (2014) Biodegradation of nicotine by a novel nicotine-degrading bacterium, Pseudomonas plecoglossicida TND35 and its new biotransformation intermediates. Biodegradation 25:95–107

    Article  CAS  Google Scholar 

  • Schenk S, Hoelz A, Krass B, Decker K (1998) Gene structures and properties of enzymes of the plasmid-encoded nicotine catabolism of Arthrobacter nicotinovorans. J Mol Biol 284:1323–1329

    Article  CAS  Google Scholar 

  • Squires WC, Hayes LE (1972) Synthesis of 6-hydroxynicotine. US Patent 3644176

  • Tang H, Wang L, Meng X, Ma L, Wang S, He X, Wu G, Xu P (2009) Novel nicotine oxidoreductase-encoding gene involved in nicotine degradation by Pseudomonas putida strain S16. Appl Environ Microbiol 75:772–778

    Article  CAS  Google Scholar 

  • Tang HZ, Yao YX, Zhang DK, Meng XZ, Wang LJ, Yu H, Ma LY (2011) A novel NADH-dependent and FAD-containing hydroxylase is crucial for nicotine degradation by Pseudomonas putida. J Biol Chem 286:39179–39187

    Article  CAS  Google Scholar 

  • Tang H, Yao Y, Wang L, Yu H, Ren Y, Wu G, Xu P (2012) Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation. Sci Rep 2:377

    Google Scholar 

  • Tang H, Wang L, Wang W, Yu H, Zhang K, Yao Y, Xu P (2013) Systematic unraveling of the unsolved pathway of nicotine degradation in Pseudomonas. PLoS Genet 9:e1003923

    Article  Google Scholar 

  • Treadway SL, Yanagimachi KS, Lankenau E, Lessard PA, Stephanopoulos G, Sinskey AJ (1999) Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24. Appl Microbiol Biotechnol 51:786–793

    Article  CAS  Google Scholar 

  • Vidal C (1996) Nicotinic receptors in the brain: molecular biology, function, and therapeutics. Mol Chem Neuropathol 28:3–11

    Article  CAS  Google Scholar 

  • Wang SN, Xu P, Tang HZ, Meng J, Liu XL, Huang J, Chen H, Du Y, Blankespoor HD (2004) Biodegradation and detoxification of nicotine in tobacco solid waste by a Pseudomonas sp. Biotechnol Lett 26:1493–1496

    Article  CAS  Google Scholar 

  • Wang SN, Liu Z, Tang HZ, Meng J, Xu P (2007) Characterization of environmentally friendly nicotine degradation by Pseudomonas putida biotype a strain S16. Microbiology 153:1556–1565

    Article  CAS  Google Scholar 

  • Wang SN, Liu Z, Xu P (2009) Biodegradation of nicotine by a newly isolated Agrobacterium sp. strain S33. J Appl Microbiol 107:838–847

    Article  CAS  Google Scholar 

  • Wang SN, Huang HY, Xie KB, Xu P (2012) Identification of nicotine biotransformation intermediates by Agrobacterium tumefaciens strain S33 suggests a novel nicotine degradation pathway. Appl Microbiol Biotechnol 95:1567–1578

    Article  CAS  Google Scholar 

  • Yu H, Tang H, Zhu X, Li Y, Xu P (2015) Molecular mechanism of nicotine degradation by a newly isolated strain Ochrobactrum sp. SJY1. Appl Environ Microbiol 81:272–281

    Article  Google Scholar 

  • Yuan YJ, Lu ZX, Wu N, Huang LJ, Lü FX, Bie XM (2005) Isolation and preliminary characterization of a novel nicotine-degrading bacterium, Ochrobactrum intermedium DN2. Int Biodeter Biodegr 56:45–50

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Chang Sun of the College of Life Science, Shaanxi Normal University, for valuable comments and critical discussions. This work was supported by the National Natural Science Foundation of China (31060012), the Program for Excellent Young Talents of Yunnan University (To Jinkui Yang), the key Project of China National Tobacco Corporation [110201401017 (XX-05)], and the Basic Research Foundation of Yunnan Tobacco Industry Co. Ltd. (2015CP06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Ma, G., Duan, Y. et al. Biodegradation and metabolic pathway of nicotine in Rhodococcus sp. Y22. World J Microbiol Biotechnol 32, 188 (2016). https://doi.org/10.1007/s11274-016-2147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2147-8

Keywords

Navigation