Skip to main content

Advertisement

Log in

Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Huperzia serrata has many important medicinal properties with proven pharmacological potential. Some of these properties may be mediated by its endophytic fungi. To test this hypothesis, in the present study, we provided a first insights into evaluating the species composition and acetylcholinesterase (AChE) inhibitory activity of the culturable endophytic fungi of H. serrata from the regional at Jinggang Mountain in southeastern China. A total number of 885 fungal isolates distributed across 44 genera and 118 putative species were obtained from 1422 fragments of fine H. serrata roots, stems and leaves base on ITS-rDNA sequences BLAST analysis. The endophytic fungi were phylogenetically diverse and species-rich, with high rate of colonization and isolation. The assemble of endophytic fungi consisted mainly of Ascomycota (97.15 %), followed by Basidiomycota (1.92 %) and unknown fungal species (0.90 %). Colletotrichum (64.29 %), Phyllosticta (3.39 %), Hypoxylon (2.81 %), Xylaria (2.25 %) and Nigrospora (2.04 %) were the most abundant genera, whereas the remaining genera were infrequent groups. Although, roots yielded low abundance strains, the diverse and species-rich were both higher than that of stems and leaves. In addition, out of the 247 endophytic fungi strains determinated, 221 fungal extracts showed AChE inhibition activities in vitro. Among them, 22 endophytic fungi strains achieved high inhibitory activity (≥50 %) on AChE which belongs to 13 genera and five incertae sedis strains. Four endophytic fungi designated as JS4 (Colletotrichum spp.), FL14 (Ascomycota spp.), FL9 (Sarcosomataceae spp.) and FL7 (Dothideomycetes spp.) were displayed highly active (≥80 %) against AChE, which the inhibition effects were even more intense than the positive control. Our findings highlight that H. serrata grown in Jinggang Mountain harbors a rich and fascinating endophytic fungus community with potential AChE inhibitory activity, which could further broaden the natural acetylcholinesterase inhibitors resources used for Alzheimer’s disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aly AH, Debbab A, Proksch P (2011) Fifty years of drug discovery from fungi. Fungal Divers 50:3–19

    Article  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  Google Scholar 

  • Bassett EN, Fenn P (1984) Laten colonization and pathogenicity of Hypoxylon atropunctatum on oaks. Plant Dis 68:317–319

    Article  Google Scholar 

  • Beier GL, Hokanson SC, Bates ST, Blanchette RA (2015) Aurantioporthe corni gen. et comb. nov., an endophyte and pathogen of Cornus alternifolia. Mycologia 107:66–79

    Article  Google Scholar 

  • Berendsen RL, Baars JJ, Kalkhove SI, Lugones LG, Wösten HA, Bakker PA (2010) Lecanicillium fungicola: causal agent of dry bubble disease in white button mushroom. Mol Plant Pathol 11:585–595

    Google Scholar 

  • Bills GF (1995) Analyses of microfungal diversity from a user’s perspective. Can J Bot 73:33–41

    Article  Google Scholar 

  • Bockus WW, Bowden RL, Hunger RM, Morrill WL, Murray TD, Smiley RW (2010) Compendium of wheat diseases and pests, 3rd edn. APS Press, St Paul, MN

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Chen XY, Qi YD, Wei JH, Zhang Z, Wang DL, Feng JD, Gan BC (2011) Molecular identification of endophytic fungi from medicinal plant Huperzia serrata based on rDNA ITS analysis. World J Microbiol Biotechnol 27:495–503

    Article  Google Scholar 

  • Curlevski NJA, Chambers SM, Anderson IC, Cairney JWG (2009) Identical genotypes of an ericoid mycorrhiza-forming fungus occur in roots of Epacris pulchella (Ericaceae) and Leptospermum polygalifolium (Myrtaceae) in an Australian sclerophyll forest. FEMS Microb Ecol 67:411–420

    Article  CAS  Google Scholar 

  • Damm U, Fourie PH, Crous PW (2010) Coniochaeta (Lecythophora), Collophora gen. nov. and Phaeomoniella species associated with wood necroses of Prunus trees. Persoonia 24:60–80

    Article  CAS  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2012) Endophytes and associated marine derived fungi-ecological and chemical perspectives. Fungal Divers 57:45–83

    Article  Google Scholar 

  • Delaye L, García-Guzmán G, Heil M (2015) Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits? Fungal Divers 60:125–135

    Article  Google Scholar 

  • Dong LH, Fan SW, Ling QZ, Huang BB, Wei ZJ (2014) Indentification of huperzine A-producing endophytic fungi isolated from Huperzia serrata. World J Microbiol Biotechnol 30:1011–1017

    Article  CAS  Google Scholar 

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA phylogenies reveal uncharacterized fungal phylotypes on living leaves of Magnolia liliifera. Fungal Divers 23:121–138

    Google Scholar 

  • El-Neketi M, Ebrahim W, Lin W, Gedara S, Badria F, Saad HE, Lai D, Proksch P (2013) Alkaloids and polyketides from Penicillium citrinum, an endophyte isolated from the Moroccan plant Ceratonia siliqua. J Nat Prod 76:1099–1104

    Article  CAS  Google Scholar 

  • Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G (2014) Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem Rev. doi:10.1007/s11101-014-9384-y

  • Frohlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    Article  Google Scholar 

  • Giacobini E (2000) Cholinesterase inhibitors: from the Calabar bean to Alzheimer therapy. In: Giacobini E (ed) Cholinesterases and cholinesterase inhibitors. Martin Dunitz, Thônex, pp 181–226

    Google Scholar 

  • Glienke C, Pereira O, Stringari D, Fabris J, Kava-Cordeiro V, Galli-Terasawa L, Cunnington J, Shivas R, Groenewald J, Crous PW (2011) Endophytic and pathogenic Phyllosticta species, with reference to those associated with citrus black spot. Persoonia 26:47–56

    Article  CAS  Google Scholar 

  • Grosch R, Schneider JHM, Kofoet A (2004) Characterisation of Rhizoctonia solani anastomosis groups causing bottom rot in field-grown lettuce in Germany. Eur J Plant Pathol 110:53–62

    Article  Google Scholar 

  • Grum DS, Cook D, Baucom D, Mott IW, Gardner DR, Creamer R, Allen JG (2013) Production of the alkaloid swainsonine by a fungal endophyte in the host Swainsona canescens. J Nat Prod 76:1984–1988

    Article  CAS  Google Scholar 

  • Hamilton CE, Bauerle TL (2012) A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Divers 54:39–49

    Article  Google Scholar 

  • Hata K, Futai K (1995) Endophytic fungi associated healthy pine needles infested by the pine needle gall midge, Thecodiplosis japonensis. Can J Bot 73:384–390

    Article  Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    Article  CAS  Google Scholar 

  • Huang WY, Cai YZ, Surveswaran S, Hyde KD, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Keith LM, Velasquez ME, Zee FT (2006) Identification and characterization of Pestalotiopsis spp. causing scab disease of guava, Psidium guajava, in Hawaii. Plant Dis 90:16–23

    Article  CAS  Google Scholar 

  • Kleczewskl NM, Bauer JT, Bever JD, Clay K, Reynolds HL (2012) A survey of endophytic fungi of switchgrass (Panicum virgatum) in the Midwest, and their putative roles in plant growth. Fungal Ecol 5:521–529

    Article  Google Scholar 

  • Kohout P, Sýkorová Z, Ctvrtlíková M, Rydlová J, Suda J, Vohník M, Sudová R (2012) Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiol Ecol 80:216–235

    Article  CAS  Google Scholar 

  • Kumar M, Qadri M, Sharma PR, Kumar A, Andotra SS, Kaur T, Kapoor K, Gupta VK, Kant R, Hamid A, Johri S, Taneja SC, Vishwakarma RA, Riyaz-Ul-Hassan S, Shah BA (2013) Tubulin inhibitors from an endophytic fungus isolated from Cedrus deodara. J Nat Prod 76:194–199

    Article  CAS  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2013) Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers 60:137–151

    Article  Google Scholar 

  • Lai Z, Wang D, Wang Y, Yan RM, Zhang ZB, Gao BL, Zhu D (2014) Molecular identification of endophytic fungi with inhibitory activity against acetylcholinesterase from Huperzia serrata. Mycosystema 33:858–866

    CAS  Google Scholar 

  • Larsen MJ (1964) Hyphodontia alutacea in North America. Can J Bot 42:1167–1172

    Article  Google Scholar 

  • Liu KH, Ding XW, Deng BW, Chen WQ (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 36:1171–1177

    Article  CAS  Google Scholar 

  • Liu L, Gao H, Chen XL, Cai XY, Yang LL, Guo LD, Yao XS, Che YS (2010) Brasilamides A–D: sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. Eur J Org Chem 17:3302–3306

    Article  CAS  Google Scholar 

  • Ma XQ, Gang DR (2008) In vitro production of huperzine A, a promising drug candidate for Alzheimer’s disease. Phytochemistry 69:2022–2028

    Article  CAS  Google Scholar 

  • Ma XQ, Tan CH, Zhu DY, Gang DR (2005) Is there a better source of huperzine A than Huperzia serrata? Huperzine A content of Huperziaceae species in China. J Agric Food Chem 52:1393–1398

    Article  CAS  Google Scholar 

  • Ma XQ, Tan CH, Zhu DY, Gang DR, Xiao PG (2007) Huperzine A from Huperzia species—an ethnopharmacolgical review. J Ethnopharmacol 113:15–34

    Article  CAS  Google Scholar 

  • Matsumura E, Fukuda K (2013) A comparison of fungal endophytic community diversity in tree leaves of rural and urban temperate forests of Kanto district, eastern Japan. Fungal Biol 117:191–201

    Article  Google Scholar 

  • Mayers PE (1976) The first recordings of milo disease and Periconia circinata on sorghums in Australia. Aust Plant Pathol 5:59–60

    Article  Google Scholar 

  • Mei L, Zhu M, Zhang DZ, Wang YZ, Guo J, Zhang HB (2014) Geographical and temporal changes of foliar fungal endophytes associated with the invasive plant Ageratina adenophora. Microb Ecol 67:402–409

    Article  Google Scholar 

  • Menkis A, Ihrmark K, Stenlid J, Vasaitis R (2014) Root-associated fungi of Rosa rugosa grown on the frontal dunes of the Baltic Sea coast in Lithuania. Microb Ecol 67:769–774

    Article  Google Scholar 

  • Mirabolfathy M, Groenewald JZ, Crous PW (2012) First report of Pilidiella granati causing dieback and fruit rot of pomegranate (Punica granatum) in Iran. Plant Dis 96:461

    Article  Google Scholar 

  • Murray AP, Faraoni MB, Castro MJ, Alza NP, Cavallaro V (2013) Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr Neuropharmacol 11:388–413

    Article  CAS  Google Scholar 

  • Nicolaisen M, Justesen AF, Knorr K, Wang J, Pinnschmidt HO (2014) Fungal communities in wheat grain show significant co-existence patterns among species. Fungal Ecol 11:145–153

    Article  Google Scholar 

  • Photita W, Lumyong S, Lumyong P, Hyde KD (2001) Endophytic fungi of wild banana (Musa acuminata) at Doi Suthep Pui National Park, in Thailand. Mycol Res 105:1508–1513

    Article  Google Scholar 

  • Photita W, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2004) Are some endophytes of Musa acuminata latent pathogens. Fungal Divers 16:131–140

    Google Scholar 

  • Qadri M, Rajput R, Abdin MZ, Vishwakarma RA, Riyaz-Ul-Hassan S (2014) Diversity, molecular phylogeny, and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana). Microb Ecol 67:877–887

    Article  Google Scholar 

  • Rivera-Chávez J, Figueroa M, González MDC, Glenn AE, Mata R (2015) α-Glucosidase inhibitors from a Xylaria feejeensis associated with Hintonia latiflora. J Nat Prod 4:730–735

    Article  CAS  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21:67–74

    Article  Google Scholar 

  • Sakalidis ML, Hardy GESJ, Burgess TI (2011) Endophytes as potential pathogens of the baobab species Adansonia gregorii: a focus on the Botryosphaeriaceae. Fungal Ecol 4:1–14

    Article  Google Scholar 

  • Sandberg DC, Battista LJ, Arnold AE (2014) Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure. Microb Ecol 67:735–747

    Article  Google Scholar 

  • Seiber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Shan WG, Ying YM, Yu HN, Liu WH, Zhan ZJ (2010) Diketopiperazine alkaloids from Penicillium spp. HS-3, an endophytic fungus in Huperzia serrata. Helv Chim Acta 93:772–776

    Article  CAS  Google Scholar 

  • Shen XY, Li T, Chen S, Fan L, Gao J, Hou CL (2015) Characterization and phylogenetic analysis of the mitochondrial genome of Shiraia bambusicola reveals special features in the order of Pleosporales. PLoS One 10:e0116466

    Article  CAS  Google Scholar 

  • Shu S, Zhao X, Wang W, Zhang G, Cosoveanu A, Ahn Y, Wang M (2014) Identification of a novel endophytic fungus from Huperzia serrata which produces huperzine A. World J Microbiol Biotechnol 30:3101–3109

    Article  CAS  Google Scholar 

  • Stierle A, Strobei G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260:214–216

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467

    Article  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Article  Google Scholar 

  • Swett CL, Gordon TR (2015) Endophytic association of the pine pathogen Fusarium circinatum with corn (Zea mays). Fungal Ecol 13:120–129

    Article  Google Scholar 

  • Takemoto S, Nakamura H, Imamura Y, Shimane T (2010) Schizophyllum commune as a ubiquitous plant parasite. Jpn Agric Res Q 44:357–364

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  Google Scholar 

  • Terry RD, Masliah E (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  CAS  Google Scholar 

  • Thomma BP, Van Esse HP, Crous PW, de Wit PJGM (2005) Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol 6:379–393

    Article  CAS  Google Scholar 

  • Torres DP, Silva MA, Furtado GQ (2013) Infection of Curvularia gladioli on different gladiolus genotypes. Trop Plant Pathol 38:543–546

    Article  Google Scholar 

  • Vieira WA, Michereff SJ, de Morais Jr MA, Hyde KD, Câmara MP (2014) Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Divers 67:181–202

    Article  Google Scholar 

  • Wang YT, Luo S, Wang PH (2008) Endophytic fungi from Taxus mairei in Taiwan: first report of Colletotrichum gloeosporioides as an endophyte of Taxus mairei. Bot Stud 49:39–43

    Google Scholar 

  • Wang Y, Yan RM, Zeng QG, Zhang ZB, Wang D, Zhu D (2011a) Producing huperzine A by an endophytic fungus from Huperzia serrata. Mycosystema 30:255–262

    Google Scholar 

  • Wang Y, Zeng QG, Zhang ZB, Yan RM, Wang LY, Zhu D (2011b) Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata. J Ind Microbiol Biotechnol 38:1267–1278

    Article  CAS  Google Scholar 

  • Wang LL, Lv HF, Zhang L, Hua HX, Wang JH, Hu ZB, Li WK (2012) Screening of endophytic fungi from Huperzia serrata for acetylcholinesterase inhibitory activity and its taxonomic identification. Zhongguo Zhong Yao Za Zhi 37:3701–3705

    CAS  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Wimo A, Prince M (2010) World Alzheimer report. Alzheimer’s Disease International, London

  • Xiong ZQ, Yang YY, Liu QX, Sun CC, Jin Y, Wang Y (2015) Endophytes in the plant Huperzia serrata: fungal diversity and discovery of a new pentapeptide. Arch Microbiol 197:411–418

    Article  CAS  Google Scholar 

  • Yuan ZL, Zhang CL, Lin FC, Kubicek CP (2010) Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Appl Environ Microbiol 76:1642–1652

    Article  CAS  Google Scholar 

  • Zhan ZJ, Jin JP, Ying YM, Shan WG (2011) Furanone derivatives from Aspergillus sp. XW-12, an endophytic fungus in Huperzia serrata. Helv Chim Acta 94:1454–1458

    Article  CAS  Google Scholar 

  • Zhang D, Yang Y, Castlebury LA, Cerniglia CE (2006) A method for the large scale isolation of high transformation efficiency fungal genomic DNA. FEMS Microbiol Lett 145:261–265

    Article  Google Scholar 

  • Zhang ZB, Zeng QG, Yan RM, Wang Y, Zou ZR, Zhu D (2011) Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces huperzine A. World J Microbiol Biotechnol 27:479–486

    Article  CAS  Google Scholar 

  • Zhao Q, Tang XC (2002) Effects of huperzine A on acetylcholinesterase isoforms in vitro: comparison with tacrine, donepezil, rivastigmine and physostigmine. Eur J Pharmacol 455:101–107

    Article  CAS  Google Scholar 

  • Zhou SL, Yan SZ, Wu ZY, Chen SL (2014) Endophytic fungi associated with Macrosolen tricolor and its host Camellia oleifera. World J Microbiol Biotechnol 30:1775–1784

    Article  CAS  Google Scholar 

  • Zhu D, Wang JX, Zeng QG, Zhang ZB, Yan RM (2010) A novel endophytic huperzine A-producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata. J Appl Microbiol 109:1469–1478

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81260617, 31300051), by the Major Science and technology Subject of Jiangxi Province (No. 2010BSA19200, 2010AZD00307), by the Natural Science Foundation of Jiangxi Province of China (No. 20142BAB214020) and by the Foundation of Jiangxi Educational Committee (No. GJJ14595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Zhu.

Additional information

Ya Wang and Zheng Lai have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lai, Z., Li, XX. et al. Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China. World J Microbiol Biotechnol 32, 20 (2016). https://doi.org/10.1007/s11274-015-1966-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-015-1966-3

Keywords

Navigation