Skip to main content
Log in

Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbiologically induced calcite precipitation in bricks by bacterium Bacillus pasteurii (NCIM 2477) using a media especially optimized for urease production (OptU) was demonstrated in this study. Effect of biocalcification activity on compressive strength and water absorption capacity of bricks was investigated. Various other parameters such as pH, growth profile, urease activity, urea breakdown and calcite precipitated were monitored during the 28 days curing period. Efficiency of B. pasteurii to form microbial aided calcite precipitate in OptU media resulted into 83.9 % increase in strength of the bricks as compared to only 24.9 % with standard media, nutrient broth (NB). In addition to significant increase in the compressive strength, bricks treated with B. pasteurii grown in OptU media resulted in 48.9 % reduction in water absorption capacity as compared to control bricks immersed in tap water. Thus it was successfully demonstrated that microbial calcification in optimized media by Bacillus pasteurii has good potential for commercial application to improve the life span of structures constructed with bricks, particularly structures of heritage importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achal V, Mukherjee A, Basu PC, Reddy MS (2009a) Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biotechnol 36:433–438. doi:10.1007/s10295-008-0514-7

    Article  CAS  Google Scholar 

  • Achal V, Mukherjee A, Basu PC, Reddy MS (2009b) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol 36:981–988. doi:10.1007/s10295-009-0578-z

    Article  CAS  Google Scholar 

  • Achal V, Mukherjee A, Basu PC, Reddy MS (2010) Biocalcification by Sporosarcina pasteurii using corn steep liquor as nutrient source. Ind Biotechnol 6(3):170–174. doi:10.1089/ind.2010.6.170

    Article  Google Scholar 

  • Achal V, Mukherjee A, Reddy MS (2011) Microbial concrete: way to enhance the durability of building structures. J Mater Civ Eng 23(6):730–734. doi:10.1061/(ASCE)MT.1943-5533.0000159

    Article  CAS  Google Scholar 

  • Annamalai SK, Arunachalam KD, Sathyanarayanan KS (2012) Production and characterization of biocaulk by bacillus pasteurii & its remediation properties with carbon nano tubes on concrete fractures and fissures. Mater Res Bull 47(11):3362–3368. doi:10.1016/j.materresbull.2012.07.024

    Article  CAS  Google Scholar 

  • Arioli S, Ragg E, Scaglioni L, Fessas D, Signorelli M et al (2010) Alkalizing reactions streamline cellular metabolism in acidogenic microorganisms. PLoS ONE 5(11):e15520. doi:10.1371/journal.pone.0015520

    Article  CAS  Google Scholar 

  • Ariyanti D, Handayani NA, Hadiyanto H (2012) Feasibility of using microalgae for biocement production through biocementation. J Bioprocess Biotechniq 2:111. doi:10.4172/2155-9821.1000111

    CAS  Google Scholar 

  • Bachmeier KL, Williams AE, Warmington JR, Bang SS (2002) Urease activity in microbiologically-induced calcite precipitation. J Biotech 93:171–181

    Article  CAS  Google Scholar 

  • Bakar BHA, Ibrahim MHA, Johari MAJ (2011) A review: durability of fired clay brick masonry wall due to salt attack. Int J Integr Eng 1(2):111–127

    Google Scholar 

  • Balan S, Fazila F, Jayalakshmi S (2012) Characterization of urease enzyme from marine bacterium Klebsiella species. Afr J Microbiol Res 6(30):5914–5923. doi:10.5897/AJMR12.218

    Google Scholar 

  • Chahal N, Rajor A, Siddique R (2011) Calcium carbonate precipitation by different bacterial strains. Afr J Biotechnol 10(42):8359–8372. doi:10.5897/AJB11.345

    CAS  Google Scholar 

  • Crawford RL, Burbank MB, Weaver TJ, Williams BC (2011) In situ precipitation of calcium carbonate (CaCO3) by indigenous microorganisms to improve mechanical properties of a geomaterial. Patent application No: 20110027850

  • Dhami N, Reddy S, Mukherjee A (2012a) Improvement in strength properties of ash bricks by bacterial calcite. Ecol Eng 39:31–35. doi:10.1016/j.ecoleng.2011.11.01110

    Article  Google Scholar 

  • Dhami N, Reddy S, Mukherjee A (2012b) Advanced topics in biomineralization. In: Dr. Jong Seto (ed) Biofilm and microbial applications in biomineralized concrete, pp 137–164. doi: 10.5772/31124

  • Ehrlich HL (1996) How microbes influence mineral growth and dissolution. Chem Geol 132:5–9. doi:10.1016/S0009-2541(96)00035-6

    Article  CAS  Google Scholar 

  • Elert K, Cultrone G, Rodriguez CN, Pardo ES (2003) Durability of bricks used in the conservation of historic buildings—influence of composition and microstructure. J Cult Herit 4:91–99. doi:10.1016/S1296-2074(03)00020-7

    Article  Google Scholar 

  • Ferris FG (2003) Calcite precipitation and trace metal partitioning in groundwater and the vadose zone: remediation of strontium-90 and other divalent metals and radionuclides in Arid Western Environments Project Number: 70206 http://www.osti.gov/bridge/purl.cover.jsp?purl=/809819-fzR8yA/native/809819.pdf

  • Fischer SS, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571. doi:10.1016/S0038-0717(99)00082-6

    Article  Google Scholar 

  • Ghosh P, Mandal S, Chattopadhyay BD, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cem Concr Res 35(10):1980–1983. doi:10.1016/j.cemconres.2005.03.005

    Article  CAS  Google Scholar 

  • Jahns T (1996) Ammonium/urea-dependent generation of a proton electrochemical potential and synthesis of ATP in Bacillus pasteurii. J Bacteriol 178(2):403–409. doi:10.1021/bi970326t

    CAS  Google Scholar 

  • Jonkers H, Schlangen E (2007) Crack repair by concrete-immobilized bacteria.Proceedings of the First International Conference on Self Healing Materials 18-20 April 2007, Noordwijk aan Zee, The Netherlands

  • Jonkers H, Thijssen A, Muyzer G, Copuroglu O, Schlangen E (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36:230–235. doi:10.1016/j.ecoleng.2008.12.036

    Article  Google Scholar 

  • Knorre H, Krumbein W (2000) Bacterial calcification. In: Riding RE, Awramik SM (eds) Microbial Sediments. Springer, Berlin, pp 25–31

    Chapter  Google Scholar 

  • Koyama N (1989) Ammonium-dependent transports of amino acids and glucose in a facultatively anaerobic alkalophile. FEBS Lett 253:187–189. doi:10.1016/0014-5793(89)80956-1

    Article  CAS  Google Scholar 

  • Koyama N (1993) Stimulatory effect of NH4 + on the transport of leucine and glucose in an anaerobic alkaliphile. Eur J Biochem 217:435–439. doi:10.1111/j.1432-1033.1993.tb18263.x

    Article  CAS  Google Scholar 

  • Makoff AJ, Radford A (1978) Genetics and biochemistry of carbamoyl phosphate biosynthesis and its utilization in the pyrimidine biosynthetic pathway. Microbiol Rev. 42(2):307 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC281432/

  • McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117. doi:1016/S0012-8252(96)00036-0

    Article  CAS  Google Scholar 

  • Moat AG, Foster JW, Spector MP (2002) Microbial physiology. Purines and pyrimidines, 4th edn. Wiley-Liss, New York, pp 545–560

    Google Scholar 

  • Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261. doi:10.1016/S0168-6445(03)00042-1

    Article  CAS  Google Scholar 

  • Muynck W, Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136. doi:10.1016/j.ecoleng.2009.02.006

    Article  Google Scholar 

  • Natarajan KR (1995) Kinetic study of the enzyme urease from Dolichos biflorus. J Chem Educ 72:556–557. doi:10.1021/ed072p556

    Article  CAS  Google Scholar 

  • Ng WS, Lee ML, Hii SL (2012) An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. WASET 62:723–729

    Google Scholar 

  • Phoenix VR, Ferris FG (2002) Kinetics of calcite precipitation induced by ureolytic bacteria at 10–20 °C in artificial groundwater. American Geophysical Union, Fall Meeting 2002, abstract #B11B-0727. Bibliographic Code:2002AGUFM.B11B0727P

  • Sarda D, Choonia H, Sarode DD, Lele SS (2009) Biocalcification by Bacillus pasteurii urease: a novel application. J Ind Microbiol Biotechnol 36:1111–1115. doi:10.1007/s10295-009-0581-4

    Article  CAS  Google Scholar 

  • Sarode DD, Mukherjee A (2009) Concrete solutions. Microbial precipitation for repairs of concrete structures, CRC Press, pp 191–198. doi: 10.1201/9780203864005.ch33

  • Shirakawa MA, Cincotto MA, Atencio D, Gaylarde C, Vanderley J (2011) Effect of culture medium on biocalcification by Pseudomonas putida, Lysinibacillus sphaericus and Bacillus subtilis. Braz J Microbiol 42(2):499–507. doi:10.1590/S1517-83822011000200014

    Article  Google Scholar 

  • Vempada SR, Reddy S, Rao S, Sasikala C (2011) Strength enhancement of cement mortar using microorganisms: an experimental study. J Earth Sci Eng 04(06):933–936

    Google Scholar 

  • Zamarreño D, May E, Inkpen R (2009a) Influence of environmental temperature on biocalcification by non-sporing freshwater bacteria. Geomicrobiol J 26(4):298–309. doi:10.1080/01490450902895962

    Article  Google Scholar 

  • Zamarreño DV, Inkpen R, May E (2009b) Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl Environ Microbiol 75(18):5981–5990. doi:10.1128/AEM.02079-08

    Article  Google Scholar 

Download references

Acknowledgments

The financial assistance to this study received from Rajiv Gandhi Commission for Science and Technology (RGC), Government of Maharashtra, India is gratefully acknowledged. The authors are thankful to Structural Department, VJTI, Mumbai, India for the experimental facilities. The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Lele.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raut, S.H., Sarode, D.D. & Lele, S.S. Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures. World J Microbiol Biotechnol 30, 191–200 (2014). https://doi.org/10.1007/s11274-013-1439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1439-5

Keywords

Navigation