Skip to main content
Log in

Cellulolytic bacteria from soils in harsh environments

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

It is believed that the exposure of organisms to harsh climate conditions may select for differential enzymatic activities, making the surviving organisms a very promising source for bioprospecting. Soil bacteria play an important role in degradation of organic matter, which is mostly due to their ability to decompose cellulose-based materials. This work focuses on the isolation and identification of cellulolytic bacteria from soil found in two environments with stressful climate conditions (Antarctica and the Brazilian semi-arid caatinga). Cellulolytic bacteria were selected using enrichments at high and low temperatures (4 or 60°C) in liquid media (trypic soy broth—TSB and minimum salt medium—MM) supplemented with cellulose (1%). Many of the isolates (119 out of 254—46.9%) displayed the ability to degrade carboxymethyl-cellulose, indicating the presence of endoglucolytic activity, while only a minority of these isolates (23 out of 254—9.1%) showed exoglucolytic activity (degradation of avicel). The obtained isolates revealed a preferential endoglucolytic activity according to the temperature of enrichments. Also, the identification of some isolates by partial sequencing of the 16S rRNA gene indicated that the Bacteroidetes (e.g., Pedobacter, Chryseobacterium and Flavobacterium) were the main phylum of cellulolytic bacteria isolated from soil in Antarctica; the Firmicutes (e.g., Bacillus) were more commonly isolated from samples from the caatinga; and Actinobacteria were found in both types of soil (e.g., Microbacterium and Arthrobacter). In conclusion, this work reports the isolation of bacteria able to degrade cellulose-based material from soil at very low or very high temperatures, a finding that should be further explored in the search for cellulolytic enzymes to be used in the bioenergy industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aislabiea JM, Jordan SB, Barker GM (2008) Relation between soil classification and bacterial diversity in soils of the Ross Sea region. Antarctica Geoderma 144:9–20

    Article  Google Scholar 

  • Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31:871–888

    Article  CAS  Google Scholar 

  • Beyer L (2000) Properties, formation and geo-ecological, significance of organic soils in the coastal region of east Antarctica. Catena 39:79–93

    Article  CAS  Google Scholar 

  • Beyer L, White DM, Bolter M (2001) Soil organic matter composition, transformation, and microbial colonisation of Gelic Podzols in the coastal region of East Antarctica. Austr J Soil Res 39:543–563

    Article  CAS  Google Scholar 

  • Bhat MK (2000) Cellulase and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  Google Scholar 

  • Bisaria VS, Ghose TK (1981) Biodegration of cellulosic materials: substrates, microrganisms, enzymes and products. Enzy and Micr Technol 3:90–104

    Article  CAS  Google Scholar 

  • Blumer-Schuette SE, Kateava I, Westpheling J, Adams MWW, Kelly RM (2008) Extremely thermophilic microrganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217

    Article  CAS  Google Scholar 

  • Booth IR, Cash P, O`Bryne C (2002) Sensing and adapting to acid stress. Ant van Leu 81:33–42

    Article  CAS  Google Scholar 

  • Chandrasekaran A, Bharadwaj R, Park JI, Sapra R, Adams PD, Singh AK (2010) A microscale platform for integrated cell-free expression and activity screening of cellulases. J Prot Res 9:5677–5683

    Article  CAS  Google Scholar 

  • Clarke A (2003) Evolution, adaptation and diversity: global ecology in an Antartic context. Antar Biol in a Glo Context 3–17

  • D’ Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. Embo Rep 7:385–389

    Article  Google Scholar 

  • Duan CJ, Feng JX (2010) Mining metagenomes for novel cellulase genes. Biotechnol Lett 32:1765–1775

    Article  CAS  Google Scholar 

  • Ferrer M, Golyshina O, Beloqui A, Golyshina PN (2007) Mining enzymes from extreme environments. Curr Opin in Microbiol 10:207–214

    Article  CAS  Google Scholar 

  • Gorlach-Lira K, Coutinho HDM (2007) Population dynamics and extracellular enzymes activity of mesophilic and thermophilic bacteria isolated from semi-arid soil of northeastern Brazil. Braz J Microbiol 38:135–141

    Article  Google Scholar 

  • Hendricks CW, Doyle JD, Hugley B (1995) A new solid medium for enumerating cellulose utilizing bacteria in soil. Appl Environ Microbiol 61:2016–2019

    CAS  Google Scholar 

  • Hesami S, Allen KJ, Metcalf D, Ostland VE, Macnnes JI, Lumsdem JS (2008) Phenotypic and genotypic analysis of Flavobacterium psychrophilum isolates from Ontario salmonids with bacterial coldwater disease. Cana J Microbiol 54:619–629

    Article  CAS  Google Scholar 

  • Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Bio 3:39–46

    Article  CAS  Google Scholar 

  • Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) Arapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol 57:503–507

    Article  CAS  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid-determination of 16S ribosomal-RNA sequences for phylogenetic analyses. Proc Nat Acad Sci USA 82:6955–6959

    Article  CAS  Google Scholar 

  • Leschine S (1995) Cellulose degradation in anaerobic environments. Ann Rev of Microbiol 49:399–426

    Article  CAS  Google Scholar 

  • Lin H, Li W, Guo C, Qu S, Ren N (2011) Advances in the study of directed evolution for cellulases. Front Environ Sci Eng 5:519–525

    Article  Google Scholar 

  • Margesin R, Feller G (2010) Biotechnol Appl psychrophiles Environ Technol 31:835–844

    CAS  Google Scholar 

  • Martinez-Sáchez JL (2005) Nitrogen and phosphorus resorption in a neo tropical rain forest of a nutrient-rich soil. Rev Bio Trop 53:193–206

    Google Scholar 

  • Morais S, Heyman A, Barak Y, Caspi J, Wilson DB, Lamed R, Shoseyov O, Bayer EA (2010) Enhanced cellulose degradation by nano-complexed enzymes: synergism between a scaffold-linked exoglucanase and a free endoglunase. J Biotechnol 147:205–211

    Article  CAS  Google Scholar 

  • Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158

    Article  CAS  Google Scholar 

  • Niederberger TD, Mcdonald IR, Hacker AL, Soo RM, Barret JE, Wall DH, Cary SC (2008) Microbial community composition in soils of Northern Victoria Land. Antar Environ Microbiol 10:1713–1724

    Article  CAS  Google Scholar 

  • Niehaus F, Betoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    Article  CAS  Google Scholar 

  • Peng G, Zhu W, Wang H, Lu Y, Wang X, Zheng D, Cui Z (2010) Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity. J Microbiol Biotechnol 20:254–264

    Google Scholar 

  • Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8:1779–1802

    Article  CAS  Google Scholar 

  • Rademaker JLW, Louws FJ and De Bruijn FJ (1997) Characterization of the diversity of ecologically impornant microbes by rep-PCR genomic fingerprinting. In: Akkermans ADL, Van Elsas JD and De Bruijn JD. Molecular Microbial Ecology Manual, Kluwer Academic Publishers, Dordrecht, Supplement 3, chapter 3.4.3, pp. 1–26

  • Rastogi G, Muppidi GL, Gurram RN, Adhikari A, Bischoff KM, Hughes SR, Apel WA, Bang SS, Dixon DJ, Sani RK (2009) Isolation and characterization of cellulose bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J Indus Microbiol Biotechnol 36:585–598

    Article  CAS  Google Scholar 

  • Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101:8798–8806

    Article  CAS  Google Scholar 

  • Sinegani AAS, Mahohi A (2010) Soil water potential effects on the cellulase activities of soil treated with sewage sludge. Plant Soil Environ 56:333–339

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software versión 4.0. Mol Biol Evolu 24:1596–1599

    Article  CAS  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red-polissaccahride interactions in enumeration and characterization on cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    CAS  Google Scholar 

  • Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179

    Article  CAS  Google Scholar 

  • Tindall BJ (2004) Prokaryotic diversity in the Antarctic: the tip of the iceberg. Microb Ecol 47:271–283

    Article  CAS  Google Scholar 

  • Van Den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  Google Scholar 

  • Wang G, Wang Y, Yang P, Luo H, Huang H, Shi P, Meng K, Yao B (2010) Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl Microbiol Biotechnol 87:1383–1393

    Article  CAS  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299

    Article  CAS  Google Scholar 

  • Wilson ZE, Brimble MA (2009) Molecules derived from the extremes of life. Nat Prod Rep 26:1–14

    Article  Google Scholar 

  • Yu Y, Li H, Zeng Y, Chen B (2009) Extracellular enzymes of cold-adapted bacteria from Arctic sea ice, Canada basin. Polar Biol 32:1539–1547

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Embrapa. We also thank Dr. Vivian H. Pellizari for the soil samples from Antarctica and the Brazilian Marine corps for support during the Antarctica expeditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Dini Andreote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, F.L., Melo, I.S., Dias, A.C.F. et al. Cellulolytic bacteria from soils in harsh environments. World J Microbiol Biotechnol 28, 2195–2203 (2012). https://doi.org/10.1007/s11274-012-1025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1025-2

Keywords

Navigation