Skip to main content
Log in

Characterization of an enantioselective amidase with potential application to asymmetric hydrolysis of (R, S)-2, 2-dimethylcyclopropane carboxamide

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Amidase is a promising synthesis tool for chiral amides and related derivatives. In the present study, the biochemical properties of the Delftia tsuruhatensis CCTCC M 205114 enantioselective amidase were determined for its potential application in chiral amides synthesis. D. tsuruhatensis CCTCC M 205114 amidase was purified 105.2 fold with total activity recovery of 4.26%. The enzyme is a monomer with a subunit of approximately 50 kDa by analytical gel filtration HPLC and SDS–PAGE. It had a broad substrate spectrum and displayed high enantioselectivity against R-2, 2-dimethylcyclopropane carboxamide and R-mandelic amide. The amidase was applied to enantioselective hydrolysis of R-2, 2-dimethylcyclopropane carboxamide from racemic (R, S)-2, 2-dimethylcyclopropane carboxamide to accumulate S-2, 2-dimethylcyclopropane carboxamide. This enzyme did not require metal ions for the hydrolysis reaction. Its optimal pH and temperature were 8.0 and 35°C, respectively. The K m and V max of the amidase for R-2, 2-dimethylcyclopropane carboxamide were 2.54 mM and 8.37 μmol min−1 mg protein−1, respectively. After 60 min of the reaction, R-2, 2-dimethylcyclopropane carboxamide was completely hydrolyzed, generating S-2, 2-dimethylcyclopropane carboxamide with a yield of 45.9% and an e.e. of above 99%. Therefore, this amidase can serve as a promising producer for S-2, 2-dimethylcyclopropane carboxamide and other amides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baek DH, Song JJ, Lee SG, Kwon SJ, Asano Y, Sung MH (2003) New thermostable d-methionine amidase from Brevibacillus borstelensis BCS-1 and its application for d-phenylalanine production. Enzyme Microb Technol 32:131–139

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Briggs BS, Kreuzman AJ, Whitesitt C, Yeh WK, Zmijewski M (1996) Discovery, purification, and properties of O-phthalyl amidase from Xanthobacter agilis. J Mol Catal B Enzym 2:53–69

    Article  CAS  Google Scholar 

  • Chen J, Zheng RC, Zheng YG, Shen YC (2009) Microbial transformation of nitriles to high-value acids or amides. Adv Biochem Eng Biotechnol 113:33–77

    CAS  Google Scholar 

  • Ciskanik LM, Wilczek JM, Fallon RD (1995) Purification and characterization of an enantioselective amidase from Pseudomonas chlororaphis B23. Appl Environ Microbiol 61:998–1003

    CAS  Google Scholar 

  • d’Abusco AS, Ammendola S, Scandurra R, Politi L (2001) Molecular and biochemical characterization of the recombinant amidase from hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles 5:183–192

    Article  Google Scholar 

  • Doran JP, Duggan P, Masterson M, Turner PD, O’Reilly C (2005) Expression and purification of a recombinant enantioselective amidase. Protein Expr Purif 40:190–196

    Article  CAS  Google Scholar 

  • Egorova K, Trauthwein H, Verseck S, Antranikian G (2004) Purification and properties of an enantioselective and thermoactive amidase from the thermophilic actinomycete Pseudonocardia thermophila. Appl Microbiol Biotechnol 65:38–45

    Article  CAS  Google Scholar 

  • Gilligan T, Yamada H, Nagasawa T (1993) Production of S-(+)-2-phenylpropionic acid from (R, S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328. Appl Microbiol Biotechnol 39:720–725

    Article  CAS  Google Scholar 

  • Gopalakrishna KN, Stewart BH, Kneen MM, Andricopulo AD, Kenyon GL, McLeish MJ (2004) Mandelamide hydrolase from Pseudomonas putida: characterization of a new member of the amidase signature family. Biochemistry 43:7725–7735

    Article  CAS  Google Scholar 

  • Graham D, Pereira R, Barfield D, Cowan D (2000) Nitrile biotransformations using free and immobilized cells of a thermophilic Bacillus spp. Enzyme Microb Technol 26:368–373

    Article  CAS  Google Scholar 

  • Gregoriou M, Brown PR (1979) Inhibition of the aliphatic amidase from Pseudomonas aeruginosa by urea and related compounds. Eur J Biochem 96:101–108

    Article  CAS  Google Scholar 

  • Hayashi T, Yamamoto K, Matsuo A, Otsubo K, Muramatsu S, Matsuda A, Komatsu K (1997) Characterization and cloning of an enantioselective amidase from Comamonas acidovorans KPO-2771–4. J Ferment Bioeng 83:139–145

    Article  CAS  Google Scholar 

  • Hirrlinger B, Stolz A, Knackmuss HJ (1996) Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-arylpropionamides. J Bacteriol 178:3501–3507

    CAS  Google Scholar 

  • Hongpattarakere T, Komeda H, Asano Y (2005) Purification, characterization, gene cloning and nucleotide sequencing of D-stereospecific amino acid amidase from soil bacterium: Delftia acidovorans. J Ind Microbiol Biotechnol 32:567–576

    Article  CAS  Google Scholar 

  • Jin SJ, Zheng RC, Zheng YG, Shen YC (2008) R-enantioselective hydrolysis of 2, 2-dimethylcyclopropanecarboxamide by amidase from a newly isolated strain Brevibacterium epidermidis ZJB-07021. J Appl Microbiol 105:1150–1157

    Article  CAS  Google Scholar 

  • Kagayama T, Ohe T (1990) Purification and properties of an aromatic amidase from Pseudomonas sp GDI-211. Agric Biol Chem 54:2565–2571

    Article  CAS  Google Scholar 

  • Kaplan A (1969) The determination of urea, ammonia and urease. Methods Biochem Anal 17:311–324

    Article  CAS  Google Scholar 

  • Kobayashi M, Shimizu S (2000) Nitrile hydrolases. Curr Opin Biotechnol 4:95–102

    Article  CAS  Google Scholar 

  • Komeda H, Asano Y (2000) Gene cloning, nucleotide sequencing, and purification and characterization of the D-stereospecific amino-acid amidase from Ochrobactrum anthropi SV3. Eur J Biochem 267:2028–2035

    Article  CAS  Google Scholar 

  • Komeda H, Harada H, Washika S, Sakamoto T, Ueda M, Asano Y (2004) A novel R-stereoselective amidase from Pseudomonas sp MCI3434 acting on piperazine-2-tert-butylcarboxamide. Eur J Biochem 271:1580–1590

    Article  CAS  Google Scholar 

  • Komeda H, Hariyama N, Asano Y (2006) L-stereoselective amino acid amidase with broad substrate specificity from Brevundimonas diminuta: Characterization of a new member of the leucine aminopeptidase family. Appl Microbiol Biotechnol 70:412–421

    Article  CAS  Google Scholar 

  • Kotlova EK, Chestukhina GG, Astaurova OB, Leonova TE, Yanenko AS, Debabov VG (1999) Isolation and primary characterization of an amidase from Rhodococcus rhodochrous. Biochemistry Mosc 64:384–389

    CAS  Google Scholar 

  • Krieg L, Slusarczyk H, Verseck S, Kula MR (2005) Identification and characterization of a novel d-amidase gene from Variovorax paradoxus and its expression in Escherichia coli. Appl Microbiol Biotechnol 66:542–550

    Article  CAS  Google Scholar 

  • López-Serrano P, Wegman MA, van Rantwijk F, Sheldon RA (2001) Enantioselective enzyme catalyzed ammoniolysis of amino acid derivatives. Effect of temperature. Tetrahedron Asymmetr 12:235–240

    Article  Google Scholar 

  • Miyazawa T, Imagawa K, Yanagihara R, Yamada T (1997) Marked dependence on temperature of enantioselectivity in the Aspergillus oryzae protease-catalyzed hydrolysis of amino acid esters. Biotechnol Tech 11:931–933

    Article  CAS  Google Scholar 

  • Nawaz MS, Khan AA, Seng JE, Leakey JE, Siitonen PH, Cerniglia CE (1994) Purification and characterization of an amidase from an acrylamide-degrading Rhodococcus sp. Appl Environ Microbiol 60:3343–3348

    CAS  Google Scholar 

  • Nawaz MS, Khan AA, Bhattacharayya D, Siitonen PH, Cerniglia CE (1996) Physical, biochemical, and immunological characterization of a thermostable amidase from Klebsiella pneumoniae NCTR 1. J Bacteriol 178(8):2397–2401

    CAS  Google Scholar 

  • Park HJ, Uhm KN, Kim HK (2008) R-stereoselective amidase from Rhodococcus erythropolis no. 7 acting on 4-chloro-3-hydroxybutyramide. J Microbiol Biotechnol 18:552–559

    CAS  Google Scholar 

  • Phillips RS (1996) Temperature modulation of the stereochemistry of enzymatic catalysis: Prospects for exploitation. Trends Biotechnol 14:13–16

    Article  CAS  Google Scholar 

  • Robins KT, Gilligan T (1994) Bacteria capable of stereospecifically hydrolyzing R-(−)-2,2-dimethylcyclopropanecarboxamide. US5360731

  • Sakai T (2004) ‘Low-temperature method’ for a dramatic improvement in enantioselectivity in lipase-catalyzed reactions. Tetrahedron Asymmetr 15:2749–2756

    Article  CAS  Google Scholar 

  • Sakai T, Kishimoto T, Tanaka Y, Ema T, Utaka M (1998) Low-temperature method for enhancement of enantioselectivity in the lipase-catalyzed kinetic resolutions of solketal and some chiral alcohols. Tetrahedron Lett 39:7881–7884

    Article  CAS  Google Scholar 

  • Suzuki Y, Ohta H (2006) Identification of a thermostable and enantioselective amidase from the thermoacidophilic archaeon Sulfolobus tokodaii strain 7. Protein Expr Purif 45:368–373

    Article  CAS  Google Scholar 

  • Wang YS, Xu JM, Zheng RC, Zheng YG, Shen YC (2008) Improvement of amidase production by a newly isolated Delftia tsuruhatensis ZJB-05174 through optimization of culture medium. J Microbiol Biotechnol 18:1932–1937

    CAS  Google Scholar 

  • Wang YS, Zheng RC, Xu JM, Liu ZQ, Cheng F, Feng ZH, Liu LL, Zheng YG, Shen YC (2010) Enantioselective hydrolysis of (R)-2, 2-dimethylcyclopropane carboxamide by immobilized cells of an R-amidase-producing bacterium, Delftia tsuruhatensis CCTCC M 205114, on an alginate capsule carrier. J Ind Microbiol Biotechnol 37:503–510

    Article  CAS  Google Scholar 

  • Zheng RC, Wang YS, Liu ZQ, Xing LY, Zheng YG, Shen YC (2007a) Isolation and characterization of Delftia tsuruhatensis ZJB-05174, capable of R-enantioselective degradation of 2, 2-dimethylcyclopropanecarboxamide. Res Microbiol 158:258–264

    Article  CAS  Google Scholar 

  • Zheng RC, Zheng YG, Shen YC (2007b) Enantioseparation and determination of 2, 2-dimethylcyclopropanecarboxamide and corresponding acid in the bioconversion broth by gas chromatography. Biomed Chromatogr 21:610–615

    Article  CAS  Google Scholar 

  • Zimmermann T, Robins K, Birch OM, Bohlen E (1995) Genetic engineering process for the production of S-(+)-2,2-dimethylcyclopropanecarboxamide by microorganisms. US 5427934

Download references

Acknowledgments

We would like to thank Elise A. Lamonta (Department of Veterinary Population Medicine, University of Minnesota) for reviewing and valuable suggestions. This work was supported by the Major Basic Research Development Program of China (No. 2011CB710800) and the Natural Scientific Foundation of Zhejiang (Y407225 and Y4080334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YS., Cheng, F., Zheng, RC. et al. Characterization of an enantioselective amidase with potential application to asymmetric hydrolysis of (R, S)-2, 2-dimethylcyclopropane carboxamide. World J Microbiol Biotechnol 27, 2885–2892 (2011). https://doi.org/10.1007/s11274-011-0769-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0769-4

Navigation